期刊文献+

沸腾炉炉底形状对气固两相流动特性的影响

Effect of Furnace Hearth Shape on Gas–Solid Fluidization Characteristics in a Fluidized Furnace
原文传递
导出
摘要 采用CFD模拟了沸腾炉内气-固相互作用的过程,分析了不同弧度炉底条件下,颗粒瞬时浓度分布、颗粒的速度大小和方向随时间变化、床层中心处压降随高度变化、颗粒在径向的浓度变化规律.结果表明,当表观气速为0.24m/s时,平底的中心气流较强,而弧形炉底可有效发展边壁气流,通过模拟得到弧形炉底炉内中心线上的压力在高度为350~450 mm处有突降过程,当炉底弧度为60o时,颗粒浓度分布较为均匀,增强了主反应段的内循环.而炉底弧度为90°和0°时,颗粒浓度在中心或边壁处较大,分布不均匀,在主反应段不能有效形成内循环.相对于炉底弧度为90°和0°,弧度为60°的气泡数量较多,且直径小于50 mm的气泡比率较大.模拟结果通过与实体模型实验平台拍摄的气体-颗粒的流动图谱和检测数据的比较分析得到了验证.60°弧度的炉底可以有效减少细颗粒的扬析量和提高流化质量. The interaction between gas and particles in a fluidized furnace was simulated using CFD software. The distribution of instantaneous particles concentration, change of velocity and orientation of particles with time, pressure drop with height at the center of bed, and radial concentration distribution of particles under various arc degrees of furnace bottom were investigated. The results showed that the gas from the center of flat bottom was stronger than that from the arc bottom, when the superficial velocity was 0.24 m/s. The center pressure dropped suddenly at the height of 300~400 mm, the inner loop in the region of reaction was reinforced, and the particles concentration was distributed equally when the arc degree of bottom was 60°, the portion of bubbles with the diameter less than 50 mm was higher and the number of bubbles was more than that under the arc degrees of 90° and 0°. The simulated results agreed with the experimental ones of photographs and parameter change curves of gas–particles flow. A better fluidization could be achieved under the arc degree of furnace bottom at 60°.
出处 《过程工程学报》 CAS CSCD 北大核心 2015年第1期23-28,共6页 The Chinese Journal of Process Engineering
基金 国家自然科学基金资助项目(编号:51374263) 中国地质调查资助项目(编号:[2014]04-002-007-12120113087400)
关键词 计算流体动力学 气体 颗粒 沸腾炉 内循环 双欧拉模型 CFD gas particle fluidized furnace inner loop dual Euler model
  • 相关文献

参考文献17

  • 1Lin C H, Teng J T, Chyang C S. Evaluation of the Combustion Efficiency and Emission of Pollutants by Coal Particles in a Vortexing Fluidized Bed [J]. Combust. Flame, 1997, 100(1/2): 163-172.
  • 2Zhang J, Nieh S. Swirling Reacting Turbulent Gas-Particles Flow in a Vortex Combustor [J]. Powder Technol., 2000, 112(1/2): 70-78.
  • 3田文栋,郝金华,魏小林,黎军,吴东垠,盛宏至.内旋流流化床换热埋管的传热特性[J].燃烧科学与技术,2000,6(4):296-299. 被引量:5
  • 4刘会娥,杨艳辉,魏飞,金涌.内构件对于提升管中颗粒混合行为的影响[J].化学反应工程与工艺,2002,18(2):109-114. 被引量:17
  • 5沈志远,杨利军,刘梦溪,卢春喜.中心气升式气固环流反应器中的能耗分布[J].过程工程学报,2012,12(3):369-375. 被引量:4
  • 6魏飞,杨艳辉,金涌.内构件对于高密度提升管流体力学行为的影响[J].化工学报,2000,51(6):806-809. 被引量:14
  • 7王淑彦,孙泽,李鑫,等.漩涡流化床流动特性的数值模拟[A].第七届全国流态化会议论文集[C].2013.33-39.
  • 8Wang X S, Gibbs B M. Hydrodynamics of Circulating Fluidized Bed with Secondary Air Injection [M]. Oxford: Pergamon Press, 1991. 225-230.
  • 9Murat K. Gas Mixing and Flow Dynamics in Circulating FluidizedBeds with Secondary air Injection [D]. Canada: Dalhousie University, 2001.30-32.
  • 10Kang Y, Song P S, Yun S J, et al. Effects of Secondary Air Injection On Gas-Solid Flow Behavior in Circulating Fluidized Beds [J]. Chem. Eng. Commun., 2000, 177: 31-47.

二级参考文献40

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部