期刊文献+

水中多壁碳纳米管的凝聚动力学 被引量:3

Aggregation kinetics of multi-walled carbon nanotubes in aquatic systems
下载PDF
导出
摘要 利用动态光散射技术研究了环境因素对水中多壁碳纳米管(Multi-walled carbon nanotubes,MWNTs)颗粒凝聚过程的影响.结果表明,投加一价、二价电解质均可使水中MWNTs颗粒Zeta电位减小、水合动力学半径增大,促进颗粒间凝聚的发生;水中MWNTs颗粒的凝聚过程可分为反应控制和扩散控制两个不同阶段,符合经典的胶体稳定性(DLVO)理论.经计算,Na+、K+、Ca2+和Mg2+的临界凝聚浓度分别为221、251、8.0、8.4 mmol·L-1.腐殖酸存在可通过空间位阻效应显著增强水中MWNTs的分散性,表明MWNTs可稳定存在于典型的水环境中. The aggregation kinetics of multi-walled carbon nanotubes (MWNTs) in water were examined through time-resolved dynamic light scattering measurements. The results showed that both monovalent (NaCl) and divalent (CaCl2 and MgCl2) electrolytes induced dramatic decrease in the hydrodynamic surface zeta potential and increase in the particle size of MWNTs, thus promoting the aggregation between particles. The aggregation process of MWNTs in water was divided into two phases, reaction limited aggregation and diffusion limited aggregation, which was found to be consistent with the classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory on colloidal stability. The critical coagulation concentration (CCC) of MWNTs was 221 mmol·L^-1 Na^+, 251 mmol·L^-1 K+, 8.0 mmol·L^-1 Ca^2+ and 8.4 mmol·L^-1 Mg^2+. The enhanced stability of MWNTs in the presence of humic acid was due to steric repulsion. MWNTs can be relatively stable in typical aquatic environments.
出处 《环境化学》 CAS CSCD 北大核心 2015年第2期347-351,共5页 Environmental Chemistry
基金 国家水体污染控制与治理科技重大专项(2008ZX07101-02-03) 江苏省自然科学基金项目(BK20100592) 江苏高校优势学科建设工程资助项目
关键词 多壁碳纳米管(MWNTs) 凝聚动力学 电解质 腐殖酸 multi-walled carbon nanotubes ( MWNTs ), aggregation kinetics, electrolytes, humic acid.
  • 相关文献

参考文献13

  • 1Li S P, Wu W, Campidelli S, et al. Adsorption of carbon nanotubes on active carbon microparticles[J]. Carbon, 2008, 46(7):1091-1095.
  • 2Zhu L, Chang D W, Dai L, et al. DNA damage induced by multiwalled carbon nanotubes in mouse embryonic stem cells[J]. Nano Letters, 2007, 7(12):3592-3597.
  • 3Alloy M M, Roberts A P. Effects of suspended multi-walled carbon nanotubes on daphnid growth and reproduction[J]. Ecotoxicology Environmental Safety, 2011, 74(7):1839-1843.
  • 4Hyung H, Fortner J D, Hughes J B, et al. Natural organic matter stabilizes carbon nanotubes in the aqueous phase[J]. Environmental Science & Technology, 2007, 41(1):179-184.
  • 5Roberts A P, Mount A S, Seda B, et al. In vivo biomodification of lipid-coated carbon nanotubes by Daphnia magna[J]. Environmental Science & Technology, 2007, 41(8):3025-3029.
  • 6Saleh N B, Pfefferle L D, Elimelech M. Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems: Measurements and environmental implications[J]. Environmental Science & Technology, 2008, 42(21):7963-7969.
  • 7Lin M Y, Lindsay H M, Weitz D A, et al. Universality of fractal aggregates as probed by light scattering[J]. Proceedings of the Royal Society of London Series A, 1989, 423(1864):71-87.
  • 8Chen K L, Elimelech M. Aggregation and deposition kinetics of fullerene (C60) nanoparticles[J]. Langmuir, 2006, 22(26):10994-11001.
  • 9Clougherty D P, Zhu X. Stability and Teller's theorem:Fullerenes in the march model[J]. Physical Review A, 1997, 56(1):632-635.
  • 10Vaisman L, Wagner H D, Marom G. The role of surfactants in dispersion of carbon nanotubes[J]. Advances in Colloid and Interface Science, 2006, (128/130):37-46.

同被引文献8

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部