期刊文献+

分数布朗运动模型下复合期权的定价

Compound option pricing in a fractional Brownian motion environment
下载PDF
导出
摘要 在市场股价满足分数布朗运动模型的条件下,采用风险中性定价法推导出有红利支付的标的看涨期权的看跌期权及另外3种复合期权的定价公式,所得结果类似于标准布朗运动模型下的情形. Based on the underlying driven by a fractional Brownian motion,formulas of pricing put option on a call option and other three kinds of compound options paying dividend are derived by risk neutral valuation.They are similar to the results based on the standard Brownian motion model.
作者 林汉燕
出处 《华中师范大学学报(自然科学版)》 CAS 北大核心 2015年第1期7-10,共4页 Journal of Central China Normal University:Natural Sciences
基金 广西自然科学基金项目(0991091) 广西教育厅科研项目(YB2014436)
关键词 分数布朗运动 复合期权 风险中性定价 fractional Brownian motion compound option risk neutral valuation
  • 相关文献

参考文献2

二级参考文献17

  • 1[1]Geske,R.The valuation of compound options[J].Journal of Financial Economics 1979,(7):63~81.
  • 2[2]Geske,R.Johnson,H.E.,The valuation of corporate liabilities as compound options:a correction 1984.
  • 3[3]Brealey,R.,Myerss,S.C.In:Principles of Corporate Finance.New York:McGraw-Hill 1991.
  • 4[4]Carr,P.The valuation of sequential exchange opportunities.Journal of Finance 1988,(5):1235-1256.
  • 5[5]Hull,J.Options,Futures,and Other derivatives,3rd ed.,Englewood Cliffs,NJ:Prentence hall,1998,2000.
  • 6[7]Geman,H.,El Karoui,Rochet,J.C.,1995.Changes of nume′raire,changes of probability measure and option pricing[J].Journal of Applied Probability 1995,(32):443-458.
  • 7[8]Journal of Financial and Quantitative Analysis 19 (2),231-232.
  • 8[9]Merton,R.C.Theory of rational option pricing[J].Bell Journal of Economics 1973,(4):141-183.
  • 9[10]Trigeorgis,L.In:Real Options.Managerial Flexibility and Strategy in Resource Allocation[M].MIT Press,Cambridge,MA,1996.
  • 10GESKE R. The Valuation of Compound Option[J]. Journal of Financial Economics, 1979,7,83-81.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部