期刊文献+

溶剂对钙钛矿薄膜形貌和结晶性的影响研究 被引量:6

Effect of solvent on the perovskite thin film morphology and crystallinity
原文传递
导出
摘要 溶剂对钙钛矿太阳能电池器件有着至关重要的影响.基于目前常用的N,N-二甲基甲酰胺(DMF)和丁内酯(GBL)溶剂,一步溶液旋涂技术和介孔电池结构,制备的钙钛矿薄膜的形貌、结晶性,以及最终的器件光电转化效率存在较大的差异,利用DMF作为溶剂,效率仅为2.8%,而基于GBL的电池效率可以达到10.1%.结合SEM,HRTEM,XRD和UV等表征手段,分析了钙钛矿从DMF溶液和GBL溶液中结晶析出的不同机理,明确了溶剂跟Pb I2的配位作用对钙钛矿的溶解、析出过程的制约作用,揭示了造成器件效率差异的本质原因. Due to their high efficiency and low cost, organic-inorganic hybrid perovskite solar cells are attracting growing interest recently. For the most commonly studied perovskite CH3NH3 Pb I3, optimization of the morphology and crystallinity of CH3NH3 Pb I3thin films can greatly improve the efficiency of perovskite solar cells. A homogenous and uniform perovskite film can prevent direct contact between the hole transport layer and the electron transport layer,and thus can significantly reduce charge recombination. And the high crystallinity perovskite film facilitates fast charge transportation and injection. Various studies have proved that solvent has a critical influence on both the morphology and the crystallinity of perovskite thin films. In this work, we thoroughly studied the influence of the normally used N,N-Dimethylformamide(DMF) and r-butyrolactone(GBL) solvents on perovskite morphology, crystallinity, as well as the solar cells efficiency. When using DMF as the solvent, the efficiency is only 2.8%, while the efficiency of the cell obtained based on GBL can reach 10.1%. SEM and HRTEM are employed to study the morphology and crystallinity of these two kinds of perovskite films. The perovskite film prepared using solvent DMF shows a rough capping layer consisting of strip-like perovskite crystals, and the filling of meso-Ti O2 is poor. Compared with DMF, the GBL perovskite film shows a better capping layer structure consisting of large perovskite domains, and the filling of meso-Ti O2 is improved as well.This great difference in capping layer morphology and meso-Ti O2 filling is one reason for the different performance.Besides morphology, different defect concentrations in these two kinds of perovskite films are another crucial issue. By Combined XRD and UV techniques, the mechanisms how perovskite precipitats from DMF and GBL solutions can be disclosed. In DMF, because of its low spoiling point of 153°C, most of DMF solvent volatilize by spin-coating, and an intermediate MOF structure of Pb I2: MAI: x DMF is formed. During thermal annealing, the unstable MOF structure breaks down and a large amount of dislocations form in perovskite films, which highly restrict the charge transport.However, the spoil point of GBL(206°C) is higher than that of DMF, which makes it hard to be fully volatilized by spin-coating. During the following thermal treatment, the solubility of perovskite is lowered with increasing temperature.So perovskite crystallites precipitate from the GBL first and then gradually grow up with the volatilization of the excess solvent. We finally find that coordination between the solvent and the Pb I2 plays a big role on the morphology and the crystallinity of the solution-processed perovskite film, and this is responsible for the difference of the device performance.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2015年第3期60-67,共8页 Acta Physica Sinica
基金 国家自然科学基金(批准号:51202266) 山东省自然科学基金(批准号:ZR2013FZ001) 青岛市应用基础研究基金(批准号:14-2-4-8-jch)资助的课题~~
关键词 钙钛矿太阳能电池 溶剂 配位作用 perovskite solar cells solvent coordination
  • 相关文献

参考文献35

  • 1Hodes G, Cahen D 2014 Nature Photon. 8 87.
  • 2Akihiro Kojima K T, Yasuo S, Tsutomu M 2009 J. Am. Chem. Soc. 131 6050.
  • 3Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y, Yang Y 2014 Science 345 542.
  • 4Singh S P, Nagarjuna P 2014 Dalton Trans.43 5247.
  • 5Chung I, Lee B, He J, Chang R P, Kanatzidis M G 2012 Nature 485 486.
  • 6Ogomi Y, Morita A, Tsukamoto S, Saitho T, Shen Q, Toyoda T, Yoshino K, Pandey S S, Ma T, Hayase S 2014 J. Phys. Chem. C 118 16651.
  • 7Shi J, Dong J, Lv S, Xu Y, Zhu L, Xiao J, Xu X, Wu H, Li D, Luo Y, Meng Q 2014 Appl. Phys. Lett. 104 063901.
  • 8Xiao M, Huang F, Huang W, Dkhissi Y, Zhu Y, Etheridge J, Gray-Weale A, Bach U, Cheng Y-B, Spiccia L 2014 Angew. Chem. Int. Ed. 26 1.
  • 9Juarez-Perez E J, Wuβler M, Fabregat-Santiago F, Lakus-Wollny K, Mankel E, Mayer T, Jaegermann W, Mora-Sero I 2014 J. Phys. Chem. Lett. 5 680.
  • 10Chen H, Pan X, Liu W, Cai M, Kou D, Huo Z, Fang X, Dai S 2013 Chem. Commun. 49 7277.

同被引文献66

  • 1NELSON J. The physics of solar cells [M]. London: Imperial College Press, 2003: 80-83.
  • 2GREEN M A. The path to 25% silicon solar cell efficiency:history of silicon cell evolution [J]. Prog Photovolt Res Appl, 2009, 17(3): 183-189.
  • 3PARIDA B, INIYAN S, GOIC R. A review of solar photovoltaic technologies [J]. Renew Sust Energy Rev, 2011, 15(3): 1625-1636.
  • 4STRANKS S D, EPERON G E, GRANCINI G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber [J]. Science, 2013, 342(6156): 341-344.
  • 5GREEN M A, HO-BAILLIE A, SNAITH H J. The emergence of perovskite solar cells [J]. Nat Photonics, 2014, 8(7): 506-514.
  • 6KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells [J]. J Am Chem Soc, 2009, 131(17): 6050-6051.
  • 7KINOSHITA T, NONOMURA K, JEON N J, et al. Spectral splitting photovoltaics using perovskite and wideband dye-sensitized solar cells [J]. Nat Commun, 2015, 6: 1-8.
  • 8LEE M M, TEUSCHER J, MIYASAKA T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites [J]. Science, 2012, 338(6107): 643-647.
  • 9IM J H, LEE C R, LEE J W, et al. 6.5% efficient perovskite quantum-dot-sensitized solar cell [J]. Nanoscale, 2011, 3(10): 4088-4093.
  • 10WOJCIECHOWSKI K, SALIBA M, LEIJTENS T, et al. Sub 150 ℃ processed meso-superstructured perovskite solar cells with enhanced efficiency [J]. Energy Environ Sci, 2014, 7(3): 1142-1147.

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部