期刊文献+

忆阻混沌系统的脉冲同步与初值影响研究 被引量:8

Impulsive synchronization and initial value effect for a memristor-based chaotic system
原文传递
导出
摘要 以光滑三次型磁控忆阻器的蔡氏电路为例,研究了两个同构忆阻混沌系统的脉冲控制同步方法.基于Lyapunov稳定性理论,给出了忆阻混沌系统的脉冲同步渐近稳定条件;结合误差系统的最大条件Lyapunov指数谱,讨论了系统初值对脉冲同步性能的影响,并进行了相应的数值仿真实验.结果表明,在合适的脉冲控制参数条件下,同构的忆阻混沌系统的脉冲同步是可行而有效的;忆阻混沌系统的初值对脉冲同步性能存在一定的影响,但可通过增大脉冲耦合强度来抑制系统初值的影响. Taking Chua's circuit with a smooth cubic flux-controlled memristor as an example, the impulsive control synchronization method for two identical memristor-based chaotic systems is studied. Based on the Lyapunov stability theory,the asymptotic stability condition for the impulsive synchronization of the memristor-based chaotic systems is given.Combining with the maximum conditional Lyapunov exponent spectrum of the error system, effects of the system initial values on the performances of impulsive synchronization are discussed, and corresponding simulation experiments are performed. Results indicate that using impulsive synchronization for the two identical memristor-based chaotic systems is feasible and effective with appropriate impulsive control parameters; the initial values of the memristor-based chaotic systems have some effects on the performances of impulsive synchronization, which can be inhibited by increasing the impulsive coupling strength.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2015年第3期199-206,共8页 Acta Physica Sinica
基金 国家自然科学基金(批准号:51277017) 江苏省自然科学基金(批准号:BK2012583)资助的课题~~
关键词 脉冲同步 LYAPUNOV函数 忆阻混沌系统 初值 impulsive synchronization Lyapunov function memristor-based chaotic system initial values
  • 相关文献

参考文献18

二级参考文献41

  • 1Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80.
  • 2Chua L O 1971 IEEE Trans. Circ. Theory 18 507.
  • 3Chua L O, Kang 5 M 1976 Proc. IEEE64 209.
  • 4Tour J M, He T 2008 Nature 453 42.
  • 5Itoh M, Chua L O 2008 Int. J. Bifurc. Chaos 18 3183.
  • 6LiuL, Su YC, Liu CX2007 Chin. Phys. B 16 1897.
  • 7Bao B C, Li C B, Xu J P, Liu Z 2008 Chin. Phys. B 17 4022.
  • 8DongE N, Chert Z P, Chen Z Q, Yuan Z Z2009 Chin. Phys. B 18 2680.
  • 9Dhamala M, Lai Y C, Kostelich E J 2003 Phys. Rev. E 61 055207.
  • 10Yorke J A, Yorke E D 1979 J. Stat, Phys. 21 263.

共引文献67

同被引文献73

  • 1张勇,舒永录.一类Lorenz型高维混沌系统的分析[J].数学的实践与认识,2020,0(1):216-222. 被引量:2
  • 2刘扬正,费树岷.Sprott-B和Sprott-C系统之间的耦合混沌同步[J].物理学报,2006,55(3):1035-1039. 被引量:26
  • 3王发强,刘崇新.Liu混沌系统的混沌分析及电路实验的研究[J].物理学报,2006,55(10):5061-5069. 被引量:38
  • 4A.Kanso, M.Ghebleh.An efficient and robust image encryption scheme for medical applications[J].Commun Nonlinear Sci Numer Simulat,2015.24(3):98-116.
  • 5Chong Fu, Wei-hong Meng, Yong-feng Zhan.An efficient and secure medical image protection scheme based on chaotic maps[J]. Computers in Biology and Medicine, 2013.43(11): 1000-1010.
  • 6J B.Lima, FMadeiro, F.J.R.Sales. Encryption of medical images based on thecosine number transform[J].Image Communication, 2015.35(5): 1-8.
  • 7Li-bo Zhang, Zhi-liang Zhu, Ben-qiang Yang. Medical Image Encryption and Compression Scheme Using Compressive Sensing and Pixel Swapping Based Per- mutation Approach[J].Hindawi Publishing Corporation. Mathematical Problems in Engineering,2015.11(2): 1-9.
  • 8AlvarezG, LiShujun. Some Basic Cryptographic Require- ments for Chaos-based Cryptosystems[J].International Journal of Bifurcation and Chaos,2006.16(8): 1-12.
  • 9Ailong Wu, Shiping Wen, Zhigang Zeng. Synchronization control of a class of memristor-based recurrent neural network[J].Information Sciences,2012.183(11): 106-116.
  • 10Pisarchik A, Zanin M (2008) Image encryption with chaotically coupled chaotic maps, Phys D 237(20): 2638-2648.

引证文献8

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部