期刊文献+

微结构光纤近红外色散波产生的研究 被引量:4

Study of near-infrared dispersion wave generation for microstructured fiber
原文传递
导出
摘要 采用有限元法对实验室自制的非线性微结构光纤进行理论分析,表明该光纤具有良好的非线性和色散波产生的相位匹配特性.为实现微结构光纤非线性的全光纤化,本实验采用中心波长为1032 nm的光纤飞秒激光器作为抽运源,获得了753—789 nm的近红外色散波.实验中发现色散波中心波长和带宽随着抽运功率的改变会产生明显变化,并且在不同光纤长度时,色散波的频移量不同,脉冲展宽及频谱也会有明显的变化.实验结果与理论分析一致.这些结果对实现微结构光纤非线性的全光纤化具有良好的借鉴作用,为生物医疗应用特别是非线性光学显微成像术的近红外光源研究打下基础. Properties of nonlinear microstructured fiber fabricated in our laboratory are theoretically analyzed using the finite element method. This fiber has a high nonlinearity and phase matching for the dispersion wave generation. To achieve all-fiber nonlinearity in microstructured fiber, the dependence of dispersion wave on the pump power is investigated.When changing the pump power at 1032 nm with a femtosecond fiber laser, the near-infrared dispersion waves cover a region from 753 to 789 nm. The central wavelength and bandwidths alter obviously, and the fiber length has a remarkable impact on pulse broadening and frequency spectrum. Results coincide with the analyses. These results could be a reference for all-fiber nonlinearity of microstructured fiber, and lay a foundation for biological and medical applications, especially some researches on the near-infrared source for nonlinear light microscopy.
机构地区 华南师范大学
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2015年第3期363-367,共5页 Acta Physica Sinica
基金 国家重点基础研究发展计划(批准号:2010CB327604) 国家自然科学基金(批准号:61377100) 华南师范大学学生课外科研重点课题(批准号:13GDKB01)资助的课题~~
关键词 微结构光纤 色散波 非线性 近红外 microstructure fiber dispersion wave nonlinearity near-infrared
  • 相关文献

二级参考文献30

  • 1王毅,鲍进,盛巡,李萍,马辉.用光学二次谐波成像技术观察皮肤内不同种类的胶原[J].激光生物学报,2005,14(4):274-278. 被引量:8
  • 2屈军乐,陈丹妮,杨建军,许改霞,林子扬,刘立新,牛憨笨.二次谐波成像及其在生物医学中的应用[J].深圳大学学报(理工版),2006,23(1):1-9. 被引量:12
  • 3Franken PA,Hill AE,Peters CW. Generation of optical harmonics[J].Physical Review Letters,1961,(04):118-119.doi:10.1103/PhysRevLett.7.118.
  • 4Freund I,Deutsch M,Sprecher A. Connective tissue polarity.optical second-harmonic microscopy,crossed-beam summation,and small-angle scattering in rat-tail tendon[J].Biophysical Journal,1986,(04):693-712.doi:10.1016/S0006-3495(86)83510-X.
  • 5Freund I,Deutsch M. Macroscopic polarity of connective tissue is due to discrete polar structures[J].Biopolymers(Peptide Science),1986,(04):601-606.doi:10.1002/bip.360250406.
  • 6Freund I,Deutsch M. Second-harmonic microscopy of biological tissue[J].Optics Letters,1986,(02):94.doi:10.1364/OL.11.000094.
  • 7Han M,Zickler L,Giese G. Second-harmonic imaging of cornea after intrastromal femtosecond laser ablation[J].Journal of Biomedical Optics,2004,(04):760-766.doi:10.1117/1.1756919.
  • 8Cox G,Kable E,Jones A. 3-dimensional imaging of collagen using second harmonic generation[J].Journal of Structural Biology,2003,(01):53-62.doi:10.1016/S1047-8477(02)00576-2.
  • 9Campagnola PJ,Millard AC,Terasaki M. Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues[J].Biophysical Journal,2002,(1 Pt 1):493-508.doi:10.1002/mus.21683.
  • 10Theodossiou T,Rapti GS,Hovhannisyan V. Thermally induced irreversible conformational changes in collagen probed by optical second harmonic generation and laser-induced fluorescence[J].Lasers in Medical Science,2002,(01):34-41.doi:10.1007/s10103-002-8264-7.

共引文献1

同被引文献16

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部