期刊文献+

Optimal oxide-aperture for improving the power conversion efficiency of VCSEL arrays

Optimal oxide-aperture for improving the power conversion efficiency of VCSEL arrays
下载PDF
导出
摘要 The maximum power conversion efficiencies of the top-emitting,oxide-confined,two-dimensional integrated 2×2 and4×4 vertical-cavity surface-emitting laser(VCSEL) arrays with the oxide-apertures of 6 μm,16 μm,19 μm,26 μm,29 μm,36 μm,39 μm,and 46 urn are fabricated and characterized,respectively.The maximum power conversion efficiencies increase rapidly with the augment of oxide-aperture at the beginning and then decrease slowly.A maximum value of27.91%at an oxide-aperture of 18.6 μm is achieved by simulation.The experimental data are well consistent with the simulation results,which are analyzed by utilizing an empirical model. The maximum power conversion efficiencies of the top-emitting,oxide-confined,two-dimensional integrated 2×2 and4×4 vertical-cavity surface-emitting laser(VCSEL) arrays with the oxide-apertures of 6 μm,16 μm,19 μm,26 μm,29 μm,36 μm,39 μm,and 46 urn are fabricated and characterized,respectively.The maximum power conversion efficiencies increase rapidly with the augment of oxide-aperture at the beginning and then decrease slowly.A maximum value of27.91%at an oxide-aperture of 18.6 μm is achieved by simulation.The experimental data are well consistent with the simulation results,which are analyzed by utilizing an empirical model.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第2期181-185,共5页 中国物理B(英文版)
基金 supported by the National Natural Science Foundation of China(Grant Nos.61222501 and 61335004) the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20111103110019)
关键词 vertical-cavity surface-emitting laser arrays power conversion efficiency oxide-aperture vertical-cavity surface-emitting laser arrays, power conversion efficiency, oxide-aperture
  • 相关文献

参考文献20

  • 1Ciftcioglu B, Berman R, ZhangJ, Darling Z, Wang S, HuJ, XueJ, Garg A,Jain M, Savidis I, Moore D, Huang M, Friedman E, Wicks G and Wu H 2011 IEEE Photon. Technol. Lett. 23 164.
  • 2Lu H H, Lin Y P, Wu P Y, Chen C Y, Chen M C andJhang T W 2014 Opt. Express 22 3468.
  • 3Safaisini R, Szczerba K, Westbergh P, Haglund E, Kogel B, GustavssonJ S, Karlsson M, Andrekson P and Larsson A 2013J. Opt. Commun. Network 5 686.
  • 4Michalzik R 2013 VCSELs: Fundamentals, Technology and Applica?tions of Vertical-Cavity Surface-Emitting Lasers (Heidelberg; Springer Press) p. 270.
  • 5Moser P, LottJ A, Wolf P, Larisch G, Payusov A, Ledentsov N Nand Bimberg D 2013 IEEEJ. Sel. Top. Quantum Electron. 197900406.
  • 6Hao Y Q, Feng Y, Wang F, Yan C L, Zhao YJ, Wang X H, Wang Y X,Jiang H L, Gao X and Bo B X 2011 Acta Phys. Sin 60 064201 (in Chinese).
  • 7LawJ Y and Agrawal G P 1997 IEEEJ. Quantum Electron. 33 462.
  • 8Al-Omari A N, Alias M S, Ababneh A and Lear K L 2012J. Phys. D: Appl. Phys. 45 505101.
  • 9Liu D, Ning Y, Zeng Y, Qin L, Liu Y, Zhang X, Zhang L, ZhangJ, Tong C and Wang L 2011 Appl. Phys. Express 4 052104.
  • 10SeurinJ F, Ghosh C L, Khalfin V, Miglo A, Xu G, WynnJ D, Pradhan P and D' Asaro L A 2008 Proe. SPIE 6908690808.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部