摘要
Multiple optical trapping with high-order axially symmetric polarized beams(ASPBs) is studied theoretically,and a scheme based on far-field optical trapping with ASPBs is first proposed.The focused fields and the corresponding gradient forces on Rayleigh dielectric particles are calculated for the scheme.The calculated results indicate that multiple ultra-small focused spots can be achieved,and multiple nanometer-sized particles with refractive index higher than the ambient can be trapped simultaneously near these focused spots,which are expected to enhance the capabilities of traditional optical trapping systems and provide a solution for massive multiple optical trapping of nanometer-sized particles.
Multiple optical trapping with high-order axially symmetric polarized beams(ASPBs) is studied theoretically,and a scheme based on far-field optical trapping with ASPBs is first proposed.The focused fields and the corresponding gradient forces on Rayleigh dielectric particles are calculated for the scheme.The calculated results indicate that multiple ultra-small focused spots can be achieved,and multiple nanometer-sized particles with refractive index higher than the ambient can be trapped simultaneously near these focused spots,which are expected to enhance the capabilities of traditional optical trapping systems and provide a solution for massive multiple optical trapping of nanometer-sized particles.
基金
supported by the National Natural Science Foundation of China(Grant Nos.61108047 and 61475021)
the Program for New Century Excellent Talents in University,China(Grant No.NCET-13-0667)
the Beijing Top Young Talents Support Program,China(Grant No.CIT&TCD201404113)