期刊文献+

Observer of a class of chaotic systems:An application to Hindmarsh–Rose neuronal model

Observer of a class of chaotic systems:An application to Hindmarsh–Rose neuronal model
下载PDF
导出
摘要 This paper first investigates the observer of a class of chaotic systems, and then discusses the synchronization between two identical Hindmarsh–Rose(HR) neuronal chaotic systems. Both the drive and response systems are assumed to have only one state variable available. By constructing proper observers, some novel criteria for synchronization are proposed via a scalar input. Numerical simulations are given to demonstrate the efficiency of the proposed approach. This paper first investigates the observer of a class of chaotic systems, and then discusses the synchronization between two identical Hindmarsh–Rose(HR) neuronal chaotic systems. Both the drive and response systems are assumed to have only one state variable available. By constructing proper observers, some novel criteria for synchronization are proposed via a scalar input. Numerical simulations are given to demonstrate the efficiency of the proposed approach.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第3期95-100,共6页 中国物理B(英文版)
基金 supported by the National Natural Science Foundation of China(Grant Nos.11361043 and 61304161) the Natural Science Foundation of Jiangxi Province,China(Grant No.20122BAB201005) the Scientific and Technological Project Foundation of Jiangxi Province Education Office,China(Grant No.GJJ14156)
关键词 chaotic system state observer scalar input chaotic system,state observer,scalar input
  • 相关文献

参考文献22

  • 1Pecora L M and Carroll T L 1990 Phys. Rev Lett: 64 821.
  • 2Kwon O M, Son J W and Lee S M 2(113 Nonlinear Dyn. 72 129.
  • 3Luo R Z, Wang Y L and Deng S C 201 1 Chaos 21 043114.
  • 4Yang D D 2014 Chin. Phys. B 23 010504.
  • 5Luo R Z and Wang Y L 2014 Indian J. Phys. 88 301.
  • 6Li G H, Zhou S P and Xu D M 2004 Chin. Phys. 13 168.
  • 7Starkov K E, Coria L N and Aguilar L T 2012 Commun. Nonlinear Sci. Numer: Simulat. 17 17.
  • 8Kuntanapreeda S 2012 Computers and Mathematics with Applications 63 183.
  • 9Yang J Q and Zhu F L 2013 Comnlttn. Nonlinear Sci. Numel: Simulat. 18 926.
  • 10Shi H J, Sun Y Z and Zhao D H 2014 Nonlinear Dyn. 75 817.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部