期刊文献+

基于SIFT匹配的多视点立体图像零视差调整 被引量:6

Zero-disparity adjustment of multiview stereoscopic images based on SIFT matching
下载PDF
导出
摘要 针对多视点自由立体显示系统,提出一种基于SIFT匹配的平行多视点立体图像零视差调整方法。首先,通过SIFT变换提取图像特征关键点、对特征关键点进行匹配,获得精确匹配点。然后,运用频率调和显著性模型计算场景的视觉显著性、提取显著性掩膜,以筛选匹配点作为零视差调整的关键点。最后,依据SIFT匹配点计算视点间视差值,并基于视差调整原理对多视点立体图像进行零视差调整。实验结果表明,所提出的方法适合多视点自由立体显示系统,零视差调整后的多视点立体图像具有良好的自由立体显示效果。 A zero-disparity adjustment method based on SIFT matching was proposed for multiview stereoscopic images using in autostereoscopic display system. First, SIFT was introduced for pixel matching between adjacent views. Then, the result of SIFT matching was filtered by saliency mask which was extracted using frequency-tuned saliency model, and the key-point of disparity control was selected.Finally, the disparity between the neighboring views was computed based on SIFT matching points, and zero-disparity adjustment was conducted based on the principle of disparity control. The disparity of selected key-point was adjusted to zero. Experimental results demonstrate that the proposed method can effectively adjust the disparity of multiview stereoscopic images and generate vivid and comfortable 3D scenes for autostereoscopic display.
出处 《红外与激光工程》 EI CSCD 北大核心 2015年第2期764-768,共5页 Infrared and Laser Engineering
基金 国家自然科学基金(61271324 61202266 61101224 61202380) 天津市自然科学基金(12JCYBJC10400 12JCQNJC00300 12JCQNJC00500)
关键词 多视点立体图像 零视差调整 SIFT匹配 自由立体显示 multiview stereoscopic images zero-disparity adjustment SIFT matching autostereoscopic display
  • 相关文献

参考文献17

  • 1Bose E, Pepion R, Le Callet P, et al. Towards a new quality metric for 3-D synthesized view assessment [JI. IEEE Journal of Selected Topics in Signal Processing, 2011. 5 (7): 1332-1343,.
  • 2Hu S. Kwong S, Zhang Y, et al. Rate-distortion optimized rate control for depth map-based 3-D video coding [Jl. IEEE Transactions on Image Processing, 2017,, 22 (2): 585-594.
  • 3Grau O, Borel T, Kauff P, et al. 3D-TV R&D activities in europe [J]. IEEE Transactions on Broadcasting, 2011, 57 (2): 408-420.
  • 4Holliman N S, Dodgson N A, Favalora G E, et al. Three- dimensional displays: a review and applications analysis[J].IEEE Transactions on Broadcasting, 2011, 57 (2): 362- 371.
  • 5Dodgson N A. Autostereoscopic 3D displays [I]. Computer, 2005, 38(8): 31-36.
  • 6Cellatoglu A, Balasubramanian K. Autostereoscopic imaging techniques for 3D TV: proposals for improvements [J]. Journal of Display Technology, 2013, 9(8): 666-672.
  • 7Woods A, Docherty T, Koch R. Image distortions in stereoscopic video systems [C]//SPIE, Stereoscopic Displays and Applications, 1993: 36-48.
  • 8Chamaret C, Godeffroy S, Lopez P, et al. Adaptive 3D rendering based on region-of-interest[C]//SPIE, Stereoscopic Displays and Applications XXI, 2010, 7524: 1-12.
  • 9Kwon K, Lira Y, Kim N. Vergence control of binocular stereoscopic camera using disparity information [J]. Journal of the Optical Society of Korea, 2009, 13(3): 379-385.
  • 10Lei J, Zhang H, Hou C, et al. Segmentation-based adaptive vergence control for parallel multiview stereoscopic images [J]. Optik-lnternational Journal for Light and Electron Opt/cs, 2013, 124(15): 2097-2100.

二级参考文献34

  • 1Koene A R, Zhaoping L. Feature-specific interactions in Salience from Combined Feature Contrasts: Evidence for a Bottom-Up Saliency Map in V1 [J]. Journal of Vision, 2007, 7(7): 1-14.
  • 2Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259.
  • 3Achanta R, Hemami S, Estrada F, et al. Frequency-tuned salient region detection [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2009: 1597-1604.
  • 4Goferaman S, Zelnik L, Tal A. Context aware saliency detection [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2010: 2376-2383.
  • 5Hou X, Zhang L. Saliency Detection: A Spectral Residual Approach [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2007: 1-8.
  • 6Wang W, Wang Y, Huang Q, et al. Measuring visual saliency by site entropy rate [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2010: 135-143.
  • 7Hou X, Zhang L. Dynamic visual attention: searching for coding length increments[C]//Advances in Neural Information Processing Systems(NIPS), 2008: 35-41.
  • 8Lin Y, Fang B, Yuanyan T. A computational model for saliency maps by using local entropy [C]//Proceedings of Twenty-Fourth AAAI Conference of Artificial Intelligence, 2010: 967-973.
  • 9Cheng M M, Zhang G X, Mitra N J. Global contrast based salient region detection [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2011: 409-416.
  • 10F Shahbaz Khan, R Muhammad Anwer, van de weijer, et al. Color attributes for object detection[C]//1EEE Conference on Computer Vision and Pattern Recognition, 2012.

共引文献4

同被引文献36

引证文献6

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部