摘要
作物叶片病斑图像分割是作物病害自动识别的一个重要步骤,为了提高传统的基于阈值或聚类的叶片病斑分割方法的分割效果,提出了一种基于支持向量机(SVM)和形态学的病斑分割方法。首先利用SVM进行病斑图像分割,再利用开运算和闭运算来消除病斑图像中边缘的不连续性、病斑内部的小噪声和小洞。最后,通过对黄瓜细菌性角斑病图像进行试验,结果表明,所提出分割方法具有较好的分割效果。
Crop leaf spot image segmentation is the important steps in crop disease automatic recognition. To im-prove the leaf spot segmentation performance of the traditional threshold or clustering methods, a spot segmenta-tion based on SVM and morphology was proposed in the paper. The spot image segmentation was formulatedby SVM.The discontinuity edge, small noise, small hole and the small hole inside the lesion image were eliminated by the op-ening and closing algorithms of morphology. The experimental results showed that this approach outperformed othermethods and was effective for cucumber leaf disease segmentation.
出处
《吉林农业科学》
2015年第1期51-53,60,共4页
Journal of Jilin Agricultural Sciences
基金
国家自然科学基金(61473237)
陕西省教育厅科研计划项目(2013JK1145
12JK1077)
西京学院科研基金项目(XJ130244
XJ130245)