期刊文献+

基于中文微博语料的情感倾向性分析 被引量:11

Sentiment analysis on Chinese Micro-blog corpus
原文传递
导出
摘要 微博的兴起与传播使得短文本情感分类成为目前的热门研究领域。通过对中文微博语料的情感倾向性分析进行研究,提出了一种新的情感分类方法。首先构建了两级情感词典,并对不同级别情感词作不同增强;然后在情感特征方面使用N-Gram方法,尽量获取有限长度博文中的未登录情感词和情感信息。经实验验证与传统方式相比较,该方法的准确率和召回率都有所提高,在COAE2014微博情感倾向性评测任务中也取得了较好的成绩。 The rise and spread of Micro-blog make sentiment classification on short texts become a hot area.A new method was proposed for Micro-blog sentiment classification.First of all,this method will create an emotional dictiona-ry with two-levels,and the words for different levels will get different enhancement;then in order to get features, N-gram method was used,which found new emotional words and emotional information from a short text.The experi-ment results show this approach has improved precision and recall rate compared to the traditional ways.This algorithm also did a very good job in COAE 2014.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2014年第11期1-7,13,共8页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(61232010 61100083) 国家重点基础研究发展计划("九七三"计划)项目(2013CB329601/02) 国家高技术研究发展计划("八六三"计划)项目(2012AA011003) 国家科技支撑计划项目(2012BAH39B04) 国家安全专项项目(2013A140)
关键词 情感分类 倾向性分析 观点挖掘 sentiment classification tendentious analysis opinion mining
  • 相关文献

参考文献11

  • 1DAVIDOV D, TSUR O, RAPPOPORT A. Enhanced sentiment learning using Twitter hashtags and smileys[C]//Proceedings of the 23rd International Conference on Computational Linguistics.Beijing: Tsinghua University Press, 2010:241-249.
  • 2BARBOSA L, FENG J. Robust sentiment detection on Twitter from biased and noisy data[C]//Proceedings of the 23rd International Conference on Computational Linguistics.Beijing:Tsinghua University Press, 2010:36-44.
  • 3HASSAN A, QAZVINIAN V, RADEV D. What's with the attitude? Identifying sentences with attitude in online discussions[C]//Proceedings of 2010 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2010:1245-1255.
  • 4MEENA A, PRABHAKAR T, AMATI G, et al. Sentence level sentiment analysis in the presence of conjuncts using linguistic analysis[C]//Advances in Information Retrieval. Heidelberg: Springer Berlin, 2007:573-580.
  • 5TURNEY P D. Thumbs up or thumbs down? semantic orientation applied to unsupervised classification of reviews[C]//Proceedings of 40th Annual Meeting of the Association for Computational Linguistics. Somerset: ACL, 2002:417-424.
  • 6SOCHER R, PENNINGTON J, HUANG E H, et al. Semi-supervised recursive auto-encoders for predicting sentiment distributions[C]//Proceedings of 2011 Conference on Empirical Methods in Natural Language Processing. [S.l.]:[s.n.], 2011: 151-161.
  • 7王根,赵军.基于多重标记CRF句子情感分析的研究[C]//全国第九届计算机语言学学术会议论文集.大连:[出版者不详],2007.
  • 8TAN Chenhao, LEE Lilian, TANG Jie, et al. User-level sentiment analysis incorporating social networks[C]//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2011:1397-1405.
  • 9LI Shoushan, WANG Zhongqing, ZHOU Guodong, et al. Semi-supervised learning for imbalanced sentiment classification[C]//Proceedings of the 22nd International Joint Conference on Artificial Intelligence. [s.l.]: AAAI Press, 2011:1826-1831.
  • 10Iadh Ounis, Craig Macdonald, Ian Soboroff. Overview of the TREC 2010 BlogTrack[C]//Proceedings of the 19th Text REtrieval Conference Proceedings (TREC 2010). NIST, 2010.

同被引文献69

  • 1Pang B, Lee L. Seeing stars: Exploiting class relation- ships for sentiment categorization with respect to rating scales[C]//Proceedings o~ the 43rd Annual Meeting on Association for Computational Linguistics. Association for Computational Linguistics, 2005: 115-124.
  • 2LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition [C]//Pro- ceedings of the IEEE, 1998, 86(11) : 2278-2324.
  • 3Yih W, He X, Meek C. Semantic parsing for single-rela- tion question answering[C]//Proceedings of ACL 2014.
  • 4Shen Y, He X, Gao J, et al. Learning semantic repre- sentations using convolutional neural networks for web search[C]//Proceedings of the companion publication of the 23rd international conference on World wide web companion. International World Wide Web Confer- ences Steering Committee, 2014: 373-374.
  • 5Blunsom P, Grefenstette E, Kalehbrenner N. A conv- olutional neural network for modelling sentences[C]// Proceedings of the 52nd Annual Meeting of the Associ- ation for Computational Linguistics. 2014.
  • 6Collobert R, Weston J, Bottou L, et al. Natural language processing (almost) from scratch[J].The Journal of Ma- chine Learning Research, 2011, 12: 2493-2537.
  • 7dos Santos C N, Gatti M. Deep convolutional neural networks for sentiment analysis of short texts[C]// Proceedings of the 25th International Conference on Computational Linguistics (COLING). Dublin, Ire-land. 2014.
  • 8Kim Y. Convolutional neural networks for sentence classification[C]//Proceedings of the EMNLP,2014.
  • 9Turney P D. Thumbs up or thumbs down? : semantic orientation applied to Unsupervised classification of reviews[C]//Proceedings of the 40th annual meeting on association for computational linguistics. Associa- tion for Computational Linguistics, 2002: 417-424.
  • 10Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks [C]//Advances in neural information processing sys- tems. 2012: 1097-1105.

引证文献11

二级引证文献177

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部