摘要
微博的兴起与传播使得短文本情感分类成为目前的热门研究领域。通过对中文微博语料的情感倾向性分析进行研究,提出了一种新的情感分类方法。首先构建了两级情感词典,并对不同级别情感词作不同增强;然后在情感特征方面使用N-Gram方法,尽量获取有限长度博文中的未登录情感词和情感信息。经实验验证与传统方式相比较,该方法的准确率和召回率都有所提高,在COAE2014微博情感倾向性评测任务中也取得了较好的成绩。
The rise and spread of Micro-blog make sentiment classification on short texts become a hot area.A new method was proposed for Micro-blog sentiment classification.First of all,this method will create an emotional dictiona-ry with two-levels,and the words for different levels will get different enhancement;then in order to get features, N-gram method was used,which found new emotional words and emotional information from a short text.The experi-ment results show this approach has improved precision and recall rate compared to the traditional ways.This algorithm also did a very good job in COAE 2014.
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2014年第11期1-7,13,共8页
Journal of Shandong University(Natural Science)
基金
国家自然科学基金资助项目(61232010
61100083)
国家重点基础研究发展计划("九七三"计划)项目(2013CB329601/02)
国家高技术研究发展计划("八六三"计划)项目(2012AA011003)
国家科技支撑计划项目(2012BAH39B04)
国家安全专项项目(2013A140)
关键词
情感分类
倾向性分析
观点挖掘
sentiment classification
tendentious analysis
opinion mining