摘要
词语级的情感倾向性分析一直是文本情感计算领域的热点研究方向,如何自动识别情感新词,并判断其情感倾向性已经成为当前亟待解决的问题。首先用基于统计量的方法识别微博语料中的新词,然后利用神经网络去训练语料中词语的词向量,从语料自身挖掘出词与词之间的相关性,最后提出了基于词向量的情感新词发现方法。实验表明该方法可以有效应用于情感新词发现。
Word-level sentiment analysis is a hot research interest in the field of affective computing.How to recognize and analyze these new emotional words automatically becomes an urgent problem.Firstly,statistics-based approach was used to identify the new words in Micro-blog corpus and then distributed representation of new words was trained by u-sing neural network in order to get the correlation between words in corpus.Finally three vector-based methods to find new emotional words were introduced.The experimental results indicate that the proposed methods in this paper can be effectively used in discovery of new emotional words.
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2014年第11期51-58,共8页
Journal of Shandong University(Natural Science)
基金
国家自然科学基金资助项目(60673039
60973068)
国家高技术研究发展计划("八六三"计划)项目(2006AA01Z151)
教育部留学回国人员科研启动基金资助项目(20090041110002)
高等学校博士学科点专项科研基金资助项目(20110041110034)
关键词
情感词
神经网络
词向量
emotional words
neural network
distributed representations of words