期刊文献+

基于语义场景的隐式篇章关系检测方法

Method of implicit discourse relation detection based on semantics scenario
原文传递
导出
摘要 针对篇章隐式关系检测较难的问题,提出了一种基于语义场景匹配的平行推理方法。该方法利用框架语义学,将论元抽象为概念一级的语义描述(简称语义场景),实现描述形式的压缩。基于大规模静态数据,通过语义场景的匹配挖掘可比较论元辅助关系推理。该方法能够在保证检测精度的同时,提升检测效率。利用宾州篇章树库(penn discourse tree bank,PDTB)对这一检测方法进行评测,检测精度为55.26%。 The implicit discourse relation detection has a higher difficulty.For this,a method was proposed to detect im-plicit discourse relation based on semantics scenario.The compression of description form was realized by frame semantics that abstract argument as conceptual semantic description (semantics scenario),and then mine the comparable argument pairs through semantics scenario from large-scale static data.It can ensure accuracy while improve detection efficiency. The discourse relation was detected in Penn Discourse Treebank (PDTB).The accuracy can reach to 55.26%.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2014年第11期59-67,81,共10页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(61373097 61272259 61272260 90920004) 教育部博士学科点专项基金资助项目(2009321110006 20103201110021) 江苏省自然科学基金资助项目(BK2011282) 江苏省高校自然科学基金重大项目(11KJA520003) 苏州市自然科学基金资助项目(SH201212)
关键词 篇章关系 隐式篇章关系 语义场景 PDTB discourse relation implicit discourse relation semantics scenario PDTB
  • 相关文献

参考文献19

  • 1PRASAD R, DINESH N, LEE A, et al. The Penn discourse treebank 2.0[C]// Proceedings of the 6th International Conference on Language Resources and Evaluation (LREC). Marrakech, Morocco, 2008: 2961-2968.
  • 2MILTSAKAKI E, LIVIO R, ALAN L, et al. Sense annotation in the Penn discourse treebank[C]// Proceedings of the 9th International Conference on Computational Linguistics and Intelligent Text Processing. Heidelberg: Springer-Verlag Berlin, 2008(4919): 275-286.
  • 3MEHWISH R,GIRJU R. Another look at causality: discovering scenario-specific contingency relationships with no supervision[C]// Proceedings of the 4th IEEE International Conference on Semantic Computing (ICSC). Pittsburgh, USA: IEEE, 2010: 361-368.
  • 4DO Xuanquang, CHAN Yee-seng, DAN Roth. Minimally supervised event causality identification[C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg, PA, USA: Association for Computational Linguistics, 2011: 294-303.
  • 5ZHOU Lanjun, LI Binyang, GAO Wei, et al. Unsupervised discovery of discourse relations for eliminating intra-sentence polarity ambiguities[C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg, PA, USA: Association for Computational Linguistics, 2011: 162-171.
  • 6王继成,武港山,周源远,张福炎.一种篇章结构指导的中文Web文档自动摘要方法[J].计算机研究与发展,2003,40(3):398-405. 被引量:43
  • 7PITLER E, RAGHUPATHY M, MEHTA H, et al. Easily identifiable discourse relations[C]// Proceedings of the 22nd International Conference on Computational Linguistics (COLING). Manchester, UK, 2008: 87-90.
  • 8WANG Wenting, SU Jian, TAN Chew-Lim. Kernel based discourse relation recognition with temporal ordering information[C]// Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics. Uppsala, Sweden: ACL, 2010: 710-719.
  • 9HONG Yu, ZHOU Xiaopei, CHE Tingting, et al. Cross-argument inference for implicit discourse relation recognition[C]// Proceedings of the 21st ACM International Conference on Information and Knowledge Managemen. New York: ACM, 2012: 295-304.
  • 10FILLMORE C J. Frame semantics and the nature of language[J]. Annals of the New York Academy of Sciences, 1976, 280:20-32.

二级参考文献7

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部