期刊文献+

基于SVM与RNN的文本情感关键句判定与抽取 被引量:8

Key sentiment sentence prediction using SVM and RNN
原文传递
导出
摘要 文本的情感倾向在很大程度上依赖于其中情感倾向性较高的关键句,对这些情感关键句正确判定有利于提高整个篇章情感分类的效果。传统的基于规则的情感倾向性分析的优点是情感词表和规则表达准确,缺点是完备性差,而统计的方法则相反。结合使用支持向量机(support vector machine,SVM)与递归神经网络(recursive neural netw ork,RNN)分别构造分类器,然后对整个篇章和单个句子进行情感二元分类,将分类结果进行比较投票后判定出篇章中的情感关键句。句子级情感特征不仅包含情感词、否定词等传统的文法信息,同时加入深度学习领域中词向量的统计信息,而在篇章特征中也抽取出句型、位置等宏观信息。通过参与COAE 2014评测任务1的结果显示,该方法的微平均F1值达到0.388,在同类评测系统中处于最高水平。 Key sentiment sentences play an important role in predicting the sentiment distribution in texts,and therefore it improves the performance after correctly judging these key sentences.After analyzing the advantages and disadvanta-ges of the state-of-the-art approaches which are mainly based on rules and statistics,it is found that rule-based methods achieve high accuracy but with low coverage,the statistic method is quite the opposite.In this paper,a novel deep learning framework to predict sentiment distributions based on Recursive Neural Network as well as Support Vector Ma-chine was introduced.There are sentiment features including not only grammar information such as sentiment and nega-tive words,but also statistical information like word vector in deep learning.Meanwhile,text features like sentence pat-tern and position were also involved.This method combines SVM and RNN in deep learning to predict sentiment distri-butions in texts,which outperforms other traditional approaches.The result from COAE2014 Task 1 shows that our method achieves a MicroF1 value of 0.388,higher than the average level.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2014年第11期68-73,共6页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(61402419 60970083 61272221) 国家社会科学基金资助项目(14BYY096) 国家高技术研究发展计划("八六三"计划)项目(2012AA011101) 河南省科技厅科技攻关计划项目(132102210407) 河南省科技厅基础研究项目(142300410231 142300410308) 河南省教育厅科学技术研究重点项目(12B520055 13B520381)
关键词 情感倾向性 递归神经网络 深度学习 机器学习 RNN sentiment analysis recursive neural network RNN deep learning machine learning
  • 相关文献

参考文献11

  • 1PANG Bo, LEE L, VAITHYANATHAN S. Thumbs up? sentiment classification using machine learning techniques[C]//Proceedings of the 2002 Conference on Empirical Methods In Natural Language Processing. Somerset: ACL, 2002:79-86.
  • 2PANG Bo, LEE L. Opinion mining and sentiment analysis[M]. Boston, Delft: Now Publishers Inc, 2008, 2(1-2):1-135.
  • 3MICHAEL G. Sentiment classification on customer feedback data: noisy data, large feature vectors, and the role of linguistic analysis [C]//Proceedings of the International Conference on Computational Linguistics. New York: ACM,2004:491-503.
  • 4LI Shoushan, HUANG Churen, ZHOU Guodong, et al. Employing personal/impersonal views in supervised and semi-supervised sentiment classification[C]//Proceedings of the International Conference on Computational Linguistics. New York: ACM, 2010:414-423.
  • 5TANG Duyu, QIN Bing, LIU Ting, et al. Learning sentence representation for emotion classification on microblogs[C]//Natural Language Processing and Chinese Computing.[S.l.]: Springer-Verlag, 2013:212-223.
  • 6TURNEY P D. Thumbs up or down? semantic orientation applied to unsupervised of reviews[C]//Proceedongs of 40th Annual Meeting of the Association for Computation Linguistics. Somerset: ACL, 2002:417-424.
  • 7SOCHER R, PENNINGTON J, HUANG E H, et al. Semi-supervised recursive auto-encoders for predicting sentiment distributions[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. PA, USA:Association for Computational Linguistics, 2011:151-161.
  • 8DASGUPTA Sajib, NG Vincent. Mine the easy, classify the hard: a semi-supervised approach to automatic sentiment classification[C]//Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP. Singapore: ACM, 2009:701-709.
  • 9SOCHER R, PERELYGIN A, WU J Y, et al. Recursive deep models for semantic compositionality over a sentiment treebank[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Edinburgh, UK: Elsevier BV, 2011:1631-1642.
  • 10LI Tao, ZHANG Yi, SINDHWANI Vikas. A non-negative matrix tri-factorization approach to sentiment classification with lexical prior knowledge[C]//Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP. Somerset: ACL, 2009:244-252.

同被引文献79

引证文献8

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部