期刊文献+

左截断右删失数据下指数分布参数多变点的贝叶斯估计 被引量:5

On Bayesian Estimation of Parameter of Exponential Distribution with Multiple Change Points for Randomly Truncated and Censored Data
下载PDF
导出
摘要 主要利用MCMC方法研究了左截断右删失数据下指数分布多变点模型的参数估计问题.通过筛选法和逆变换法得到了指数分布的完全数据,在获得各参数的满条件分布后,利用MCMC方法得到了Gibbs样本,把Gibbs样本的均值作为各参数的估计.随机模拟的结果表明各参数估计的精度都较高. Parameter estimation in exponential distribution multiple change points model for randomly truncated and censored data has been studied in this paper.The complete data of exponential distribution has been obtained by screening method and inverse transformation method.After the full conditional distributions of all parameters have been obtained,Gibbs samples have been obtained in MCMC method,and the means of Gibbs samples has been taken as Bayesian estimations of the parameters.Random simulation results show that Bayesian estimations of the parameters are fairly accurate.
出处 《西南师范大学学报(自然科学版)》 CAS 北大核心 2015年第1期12-17,共6页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(61174099) 河南省教育厅科学技术研究重点项目(12A520001)
关键词 完全数据似然函数 满条件分布 MCMC方法 GIBBS抽样 Metropolis-Hastings算法 complete-data likelihood function full conditional distribution MCMC method Gibbs sampling Metropolis-Hastings algorithm
  • 相关文献

参考文献15

  • 1PAGE E S. Continuous Inspection Schemes [J]. Biometrika, 1954, 41(1): 100-115.
  • 2HINKLEY D V. Inference about the Change-Point in a Sequence of Random Variables [J]. Biometrika, 1970, 57(1): 1-17.
  • 3CHERNOFF H, ZACKS S. Estimating the Current Mean of a Normal Distribution Which Is Subjected to Changes in Time [J]. The Annals of Mathematical Statistics, 1964, 35(3): 999-1018.
  • 4FEARNHEAD P. Exact and Efficient Bayesian Inference for Multiple Changepoint Problems [J]. Statistics and Compu- ting, 2006, 16(2): 203-213.
  • 5PERREAULT L, BERNIER J, BOBIE B, et al. Bayesian Change-Point Analysis in Hydrometeorological Time Series. Part 1. The Normal Model Revisited [J]. Journal of Hydrology, 2000, 235(3): 221-241.
  • 6LAVIELLE M, LEBARBIER E. An Application of MCMC Methods for the Multiple Change-Points Problem [J]. Signal Processing, 2001, 81(1): 39-53.
  • 7YUAN T, KUO Y. Bayesian Analysis of Hazard Rate, Change Point, and Cost-Optimal Burn-in Time for Electronic De vices [J]. IEEE Transactions on Reliability, 2010, 59(1): 132-138.
  • 8KIM J, CHEON S. Bayesian Multiple Change-Point Estimation with Annealing Stochastic Approximation Monte Carlo [J]. Computational Statistics, 2010, 25(2): 215-239.
  • 9BALAKR1SHNAN N, MITRA D. Likelihood Inference for Lognormal Data with Left Truncation and Right Censoring with an Illustration [J]. Journal of Statistical Planning and Inference, 2011, 141(11): 3536-3553.
  • 10COSSLETT S R. Efficient Semiparametric Estimation of Censored and Truncated Regressions via a Smoothed Self-Con- sistency Equation [J]. Econometrica, 2004, 72(4).- 1277-1293.

二级参考文献5

共引文献3

同被引文献38

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部