摘要
主要利用MCMC方法研究了左截断右删失数据下指数分布多变点模型的参数估计问题.通过筛选法和逆变换法得到了指数分布的完全数据,在获得各参数的满条件分布后,利用MCMC方法得到了Gibbs样本,把Gibbs样本的均值作为各参数的估计.随机模拟的结果表明各参数估计的精度都较高.
Parameter estimation in exponential distribution multiple change points model for randomly truncated and censored data has been studied in this paper.The complete data of exponential distribution has been obtained by screening method and inverse transformation method.After the full conditional distributions of all parameters have been obtained,Gibbs samples have been obtained in MCMC method,and the means of Gibbs samples has been taken as Bayesian estimations of the parameters.Random simulation results show that Bayesian estimations of the parameters are fairly accurate.
出处
《西南师范大学学报(自然科学版)》
CAS
北大核心
2015年第1期12-17,共6页
Journal of Southwest China Normal University(Natural Science Edition)
基金
国家自然科学基金项目(61174099)
河南省教育厅科学技术研究重点项目(12A520001)