期刊文献+

基于SSR子带信息融合的波达方向宽带估计算法 被引量:1

On DOA Estimation Algorithm of Information Fusion Bandwidth Based on SSR
下载PDF
导出
摘要 针对SIF方法在进行带宽DOA估计时,共同利用所有频点信息来弥补单个稀疏信号表示向量(SIV)的问题,基于多个频率测量向量的单稀疏表示信号,提出了一种新的子带信息融合算法(SIF).SIF方法属于稀疏信号表示域,它会受到代数混淆和空间混叠2个模糊性因素的影响.组合所有频率成分可以减小这2个模糊性因素的影响,通过SIV对SIF算法进行了弥补.通过大量的模拟仿真结果表明,与W-CMSR算法相比,基于稀疏信号SIF方法的波达方向宽带估计算法具有更加优越的性能. The problem of wideband DOA estimation has been studied by means of SIF,with jointly utilization of all the frequency bin information to recover a single sparse indicative vector(SIV),based on single sparse signal representation of multiple frequency-based measurement vectors,a new subband information fusion(SIF)method has been proposed.SIF method belongs to sparse signal representation domain,and it will be affected by the two vague factors of algebra confusion and spatial aliasing.Combination of all frequency components can reduce the impact of the two vague factors,compensating for the SIF algorithm by SIV.Compared with W-CMSR algorithm,a large number of simulation results show that the method based on sparse signal SIF of broadband doa estimation algorithm has superior performance.
作者 夏天维
出处 《西南师范大学学报(自然科学版)》 CAS 北大核心 2015年第1期102-106,共5页 Journal of Southwest China Normal University(Natural Science Edition)
关键词 波达方向估计 稀疏信号 子带信息融合 宽带源 无约束最优化 direction-of-arrival estimation sparse signal representation subband information fusion wideband source unconstrained optimization
  • 相关文献

参考文献12

  • 1于红旗,刘剑,黄知涛,周一宇.传播算子方法在宽带DOA估计中的应用[J].航天电子对抗,2008,24(2):43-46. 被引量:1
  • 2ZHANC- Shu yin, GUO Ying, QI Zi sen. Joint Estimation Algorithm of 2D DOA and Polarization Based on Cylindrical Conformal Array Antenna [J]. Journal of Radio Science, 2013, 26(6): 1118-1124.
  • 3齐子森,郭英,王布宏,王永良.共形阵列天线信源方位与极化状态的联合估计算法[J].电子学报,2012,40(12):2562-2566. 被引量:9
  • 4HYDER M M. Mahata K An Improved Smoothed Approximation Algorithm for Sparse Representation [J]. IEEE Trans on Signal Process, 2012, 58(4): 2194-2205.
  • 5WANG D, FATTOUCHE M. OFDM Transmission for Time Based Range Estimation [J]. IEEE Signal Processing Let ters, 2011, 17(6): 571-574.
  • 6季飞,余华,谢泽明,张军,朱一成.基于DOA矩阵法的矢量传感器阵列二维波达方向估计[J].电子与信息学报,2008,30(8):1886-1889. 被引量:16
  • 7HYDER M M, MAHATA K. Direction of-Arrival Estimation Using a Mixed 2, Onorm Approximation [J]. IEEE Transactions on Signal Processing, 2010, 58(9): 4646-4655.
  • 8SAMADI S, ETIN M. Sparse Representation Based Synthetic Aperture Radar Imaging [J]. IE Radar, Sonar & Naviga tion, 2012, 5(2): 182-193.
  • 9TANG Z, BLACQUIERE G, LEUS G. Aliasing free Wideband Beamforming Using Sparse Signal Representation [J] . IEEE Transactions on Signal Processing, 2011, 59(7): 3464-3469.
  • 10LUO J A, ZHANG X P, WANG Z. A New Subband Information Fusion Method for Wideband DOA Estimation Using Sparse Signal Representation[J].IEEE Transactions on Signal Processing, 2013, 61(5): 3016-3020.

二级参考文献29

  • 1王布宏,王永良,陈辉,郭英.方位依赖阵元幅相误差校正的辅助阵元法[J].中国科学(E辑),2004,34(8):906-918. 被引量:40
  • 2Wax M,Tie-Jun S,Kailath T. Spatio-temporal spectral analysis by eigenstructure methods[J]. Acoustics, Speech, and Signal Processing, IEEE Trans. on, 1984,32(4) : 817 - 827.
  • 3Wang H,Kaveh M. Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wide-band sources[J]. Acoustics, Speech, and Signal Processing,IEEE Trans. on,1985,33(4) :823 - 831.
  • 4Hung H, Kaveh M. Focussing matrices for coherent signalsubspace processing[J]. Acoustics, Speech, and Signal Processing, IEEE Trans. on, 1988,36(8) : 1272 - 1281.
  • 5Valaee S, Kabal P. Wideband array processing using a two- sided correlation transformation[J]. Signal Processing, IEEE Trans. on,1995,43(1) :160 - 172.
  • 6Sanchez-Aranjo J, Marcos S. Statistical analysis of the propagator method for DOA estimation without eigendecomposition[R]. Statistical Signal and Array Processing,1996.
  • 7Sanchez-Aranjo J, Marcos S. Statistical analysis of the propagator method for DOA estimation without eigendecomposition[R]. Statistical Signal and Array Processing,1996.
  • 8Bourennane, Fritkel SM. Optimal coherent subspace for bearing estimation[R]. 1996 IEEE TENCON-Digital Signal Processing Applications, 1996.
  • 9Marcos, Benidir SM. On a high resolution array processing method non-based on the eigenanalysis approach[R]. Acoustics, Speech, and Signal Processing, 1990.
  • 10Wong K T and Zoltowski M D. Closed-form direction finding and polarization estimation with arbitrarily spaced electromagnetic vector-sensors at unknown locations. IEEE Trans. on Antennas & Propagation, 2000, 48(5): 671-681.

共引文献23

同被引文献8

  • 1PAL P,VAIDYANATHAN P P. Nested Arrays : A Novel Approach to Array Processing with Enhanced Degrees ofFreedom [J]. IEEE Transactions on Signal Processing, 2010 , 58(8) : 4167 - 4181.
  • 2VAIDYANATHAN P P, PAL P. Sparse Sensing with Co-Prime Samplers and Arrays [J]. IEEE Transactions on SignalProcessing, 2011,59(2) : 573一586.
  • 3PAL P, VAIDYANATHAN P P. Coprime Sampling and The Music Algorithm [C] // IEEE in Digital Signal ProcessingWorkshop and IEEE Signal Processing Education Workshop (DSP/SPE). Sedona: AZ,IEEE, 2011 : 289 - 294.
  • 4ZHANG Yi-min, AMIN M G,HIMED B. Sparsity-Based DOA Estimation Using Co-prime Arrays [C] // IEEE Inter-national Conference on Acoustics, Speech and Signal Processing (ICASSP). Vancouver: BC,IEEE,2013 : 3967 - 3971.
  • 5CHI Yu-jie, SCHARF L L, PEZESHKI A, et al. Sensitivity to Basis Mismatch in Compressed Sensing [J]. IEEETransactions on Signal Processing, 2011, 59(5) : 2182 - 2195.
  • 6TAN Zhao, NEHORAI A. Sparse Direction of Arrival Estimation Using Co-Prime Arrays with Off-Grid Targets [J].IEEE Signal Processing Letters, 2014 , 21(1) : 26 - 29.
  • 7LIAO Wen-jing, FANNJIANG A. MUSIC for Single-Snapshot Spectral Estimation: Stability and Super-Resolution [J].Applied and Computation Harmonic Analysis. 2016,40(1) : 33 - 67.
  • 8刘传山.基于参数设计字典的稀疏表示方法[J].西南大学学报(自然科学版),2014,36(7):156-161. 被引量:2

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部