摘要
针对SIF方法在进行带宽DOA估计时,共同利用所有频点信息来弥补单个稀疏信号表示向量(SIV)的问题,基于多个频率测量向量的单稀疏表示信号,提出了一种新的子带信息融合算法(SIF).SIF方法属于稀疏信号表示域,它会受到代数混淆和空间混叠2个模糊性因素的影响.组合所有频率成分可以减小这2个模糊性因素的影响,通过SIV对SIF算法进行了弥补.通过大量的模拟仿真结果表明,与W-CMSR算法相比,基于稀疏信号SIF方法的波达方向宽带估计算法具有更加优越的性能.
The problem of wideband DOA estimation has been studied by means of SIF,with jointly utilization of all the frequency bin information to recover a single sparse indicative vector(SIV),based on single sparse signal representation of multiple frequency-based measurement vectors,a new subband information fusion(SIF)method has been proposed.SIF method belongs to sparse signal representation domain,and it will be affected by the two vague factors of algebra confusion and spatial aliasing.Combination of all frequency components can reduce the impact of the two vague factors,compensating for the SIF algorithm by SIV.Compared with W-CMSR algorithm,a large number of simulation results show that the method based on sparse signal SIF of broadband doa estimation algorithm has superior performance.
出处
《西南师范大学学报(自然科学版)》
CAS
北大核心
2015年第1期102-106,共5页
Journal of Southwest China Normal University(Natural Science Edition)
关键词
波达方向估计
稀疏信号
子带信息融合
宽带源
无约束最优化
direction-of-arrival estimation
sparse signal representation
subband information fusion
wideband source
unconstrained optimization