期刊文献+

金属型植物的抗性机制及其研究价值

Resistance Mechanism and Research Values of Metallophytes
下载PDF
导出
摘要 金属型植物能够在重金属污染严重的土壤中生存和繁殖,一方面可以通过避性机制减少对环境中重金属的吸收,另一方面通过耐性机制,如细胞壁结合、区室化作用、螯合作用和抗氧化机制减小过量蓄积在体内的重金属产生的毒害作用。金属型植物是植物修复土壤重金属污染的理想材料。深入研究金属型植物的抗性机制,可为重金属污染地区的植被恢复和生态恢复提供理论依据,对于土壤重金属污染的治理将起到十分重要的作用。 Metallophytes can survive and be reproduced in soils that are severely polluted by heavy metals. On the one hand they could reduce heavy metals absorbtion from soil environment by avoidance mechanisms; on the other hand, toxic action could be reduced by tolerance mechanisms such as combination with cell wall, compartmentalization, chelation, and antioxidation mechanisms. Metallophytes are regarded as more desirable materials for remediation of the heavy metal contaminated soils. Further research on resistance mechanism of metallophytes is needed to provide theoretical foundation of revegetation and ecological restoration in heavy metal polluted areas. It can also play important roles in the management of heavy metal pollution in soils.
作者 蔡深文
出处 《遵义师范学院学报》 2015年第1期106-110,共5页 Journal of Zunyi Normal University
关键词 金属型植物 重金属 抗性 metallophytes heavy metal resistance
  • 相关文献

参考文献44

  • 1Kramer U. Phytoremediation: novel approaches to cleaning up polluted soils [J]. Current Opinion in Biotechnology, 2005, 16(2): 133-141.
  • 2van der Ent A, Baker A J M, Reeves R D,et al. Hyperaccum- ulators of metal and metalloid trace elements: Facts and fiction [J]. Plant and Soil, 2013, 362(1-2): 319-334.
  • 3Baker A J M, Ernst W H O, van der Ent A, et al. Metallophy- tes: the unique biological resource, its ecology and conserva- tional status in Europe, central Africa and Latin Americaln[A]. LC Batty TKB Hallberg. Ecology of Industrial Pollution [C]. New york: Cambridge University Press, 2010.7-40.
  • 4Whiting S N, Reeves R D, Richards D, et al. Research Priori- ties for Conservation of Metallophyte Biodiversity and their Potential for Restoration and Site Remediation [J]. Restora- tion Ecology, 2004, 12(1): 106-116.
  • 5Antonovics J, Bradshaw A D, Turner R G. Heavy Metal Tol- erance in Plants [A]. J B Cragg. Advances in Ecological Research [C]. Academic Press, 1971.1-85.
  • 6Ernst W H O, Schat H, Verkleij J A C. Evolutionary biology of metal resistance in Silene vulgaris [J]. Trends in Ecology and Evolution, 1990, (4) : 45-50.
  • 7Cai S W, Xiong Z T, Li L, et al. Differential responses of root growth, acid invertase activity and transcript level to copper stress in two contrasting populations of Elsholtzia haichowen sis [J]. Ecotoxicology, 2014, 23(1): 76-91.
  • 8Cai S W, Huang W X, Xiong Z T, et al. Comparative study of root growth and sucrose-cleaving enzymes in metallicolous and non-metallicolous populations of Rumex dentatus under copper stress [J]. Ecotoxicology and Environmental Safety, 2013, (98): 95-102.
  • 9Ke W, Xiong Z-T, Chen S, et al. Effects of copper and mineral nutrition on growth, copper accumulation and mineral eleme- nt uptake in two Rumex japonicus populations from a copper mine and an uncontaminated field sites [J]. Environmental and Experimental Botany, 2007, 59(1): 59-67.
  • 10Zhang L, Xiong Z T, Xu Z R, et al. Cloning and character- ization of acid invertase genes in the roots of the metallophyte Kummerowia stipulacea (Maxim.) Makino from two popula- tions: Differential expression under copper stress [J]. Ecotox- icology and Environmental Safety, 2014, 104: 87-95.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部