期刊文献+

微尺度通道平板集热器的实验研究与数值模拟 被引量:1

Experimental and numerical investigation of a flat-plate solar collector with a micro-channel
下载PDF
导出
摘要 将太阳能平板集热器流道设计为间距为0.7 mm的平行微尺度通道,这种微尺度通道集热器的特点是吸热板和底板之间距离较小,流体与吸热板间的传热系数较大,水的质量流率低,热容小,可使水温快速提升。通过对微尺度太阳能集热器与传统尺度太阳能集热器传热性能的分析对比,可看出微尺度集热器在水的升温速率和对流传热系数方面有显著的优越性,为太阳能集热器用于海水淡化提供了一条高效应用的途径。 The flow channel of flat-plate solar collector is changed to micro-channel. The distance between two parallel plates is designed to be 0. 7 ram. The flat-plate solar collector with a micro-channel is characterized by a smaller distance between the absorber plate and the bottom plate. It has high coefficient of heat transfer between the fluid and the heat absorbing plate, low mass flow rate and small heat capacity. So the flat-plate solar collector can make the water temperature increasing rapidly. Compared with the traditional flat collector, the flat-plate solar collector with a micro- channel has obvious superiority in coefficient of heat transfer and the heating rate. It provides an efficient way of application for seawater desalination.
作者 张青 邓先和
出处 《现代化工》 CAS CSCD 北大核心 2014年第12期142-146,共5页 Modern Chemical Industry
关键词 平板集热器 微尺度通道 瞬时效率 对流传热系数 升温速率 fiat-plate collector micro-channel instantaneous efficiency convective heat transfer coefficient heating rate
  • 相关文献

参考文献6

  • 1侯勇,王桂华.海水淡化技术现状与发展[J].吉林电力,2011,39(1):8-10. 被引量:20
  • 2kalogriou S. Seawater desalination using renewable energy sources [J]. Progress in Energy and Combustion Science, 2005,31 (3): 242 - 281.
  • 3Eftihia Tzen, Richard Morris. Renewable energy sources for desalina- tion[ J]. Solar Energy,2003,75 (5) :375 - 379.
  • 4Soteris Kalogiou. Use of parabolic trough solar energy collectors for sea-water desalination [ J ]. Applied Energy, 1998,60 (2) :65 - 88.
  • 5Ben Cony. Designing carbon nanotube membranes for efficient water desalination[J]. J Phys Chem B,2008,112(5) :1427 - 1434.
  • 6邓先和,王娜,张青.一种微尺度通道太阳能集热器:CN,201220694795.7[P].20113-06-12.

二级参考文献12

  • 1Sumio Iijima. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354: 56-58.
  • 2Jason K. Holt, Hyung Gyu Park, Yinmin Wang, et al. Fast Mass Transport Through Sub-2- Nanometer Carbon Nanotubes [J]. Science, 2006, 312: 1034-1037.
  • 3Ben Corry. Designing Carbon Nanotube Membranes for Efficient Water Desalination[J]. J. Phys. Chem. B, 2008, 112 (5): 1427-1434.
  • 4Richard E. Kravatha, Joanna A. Davisa. Desalination of sea water by direct osmosis [J]. Desalination, 1975, 16: 151-155.
  • 5邓字.非加压式反向渗透法及其海水淡化:中国,CN92110710.2[P].199209-21.
  • 6G.W. Batchelder. Process for the demineralization ofwater: US, Patent 3,171,799[P]. 1965.
  • 7D.N. Glew, Process for liquid recovery and solution concentration: US, Patent 3,216,930[P]. 1965.
  • 8B.S. Frank, Desalination of Sea Water: US ,Patent 3,670,897 [P]. 1972.
  • 9M. Flynn, J. Fisher, B. Potential Mars Transit Systems [R]. Moffett Research Center, 1998. Borchers. An Evaluation of Vehicle Water Treatment Field, CA: NASA Ames.
  • 10J.O. Kessler, C. D. Moody. Drinking water from sea water by forward osmosis Desalination [C]. 1976. 297 306.

共引文献19

同被引文献16

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部