期刊文献+

基于迁移矩阵法的锥柱结合壳固有振动特性分析

Application of transfer matrix method for analyzing natural vibrational characteristics of isotropic coupled cylindrical-conical shells
下载PDF
导出
摘要 基于迁移矩阵法给出了圆柱壳、圆锥壳以及锥柱结合壳的运动矩阵方程,给出了精细积分以及Runge-Kutta-Gill法的矩阵方程求解方法,大幅提高了求解精度及效率。进一步以不同边界条件下圆柱壳、圆锥壳和锥柱结合壳为算例讨论了锥柱耦合后圆柱壳及圆锥壳自身振动频率的变化。算例结果与有限元软件Ansys对比,验证了本文矩阵方程及求解方法的可靠性。 The transfer matrix and the solution method for analyzing natural vibrational characteristics of isotropic cylindrical shells,conical shells and coupled cylindrical-conical shells are expressed in this paper. Precise integration and Runge-Kutta-Gill methods are used to solve the matrixes improves the precision and the efficiency of the solution. And the influence on vibrational characteristics of the coupling of the cylindrical shell and the conical shell is discussed. Compared with the FEM,the method described in the paper is efficient.
出处 《舰船科学技术》 北大核心 2014年第9期32-36,共5页 Ship Science and Technology
关键词 锥柱结合壳 迁移矩阵法 精细积分 固有振动特性 coupled cylindrical-conical shells transfer matrix method precise integration methods natural vibrational characteristics
  • 相关文献

参考文献7

  • 1KALNINS A. Free vibration of rotationally symmetric shells [ J~. J. Acoust. Soc. Am, 1964,36:1355 - 1365.
  • 2ROSE J L, MORTIMER R W, BLUM A. Elastic-wave propagation in a joined cylindrical-conical-cylindrical shell [J]. Exp. Mech,1973 ,13 :150 - 156.
  • 3HU W C L,RANEY J P. Experimental and analytical study of vibrations of joined shells [ J]. AIAA .l, 1967 ( 5 ) : 976 - 980.
  • 4EFRAIM E, EISENBERGER M. Exact vibration frequencies of segmented axisymmetric shells [ J ]. Thin-Walled Struct, 2006,44:281 - 289.
  • 5PATEL B P, GANAPATHI M, KAMAT S. Free vibration characteristics of laminated composite joined conical- cylinderical sheIls[ J]. J. Sound Vib ,2000,237:920 - 930.
  • 6IRIE T, YAMADA G, KANEK Y. Free vibration of a conical shell with variable thickness [ J ]. J. Sound Vib, 1982,82:83 - 94.
  • 7黄玉盈,向宇.变厚度圆柱蓄水池动力分析的传递矩阵法[J].振动工程学报,1989,2(4):23-32. 被引量:16

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部