期刊文献+

电站锅炉补给水处理流程全工况故障检测方法研究 被引量:2

Study of the Method for Detecting Faults in the Makeup Water and Feedwater Treatment Flow Path of a Utility Boiler Under All Operating Conditions
原文传递
导出
摘要 复杂工业流程存在多稳态工况切换及切换的过渡过程,导致传统PCA(principal component analysis)故障检测方法易于误报故障。本研究提出了基于稳态因子的过渡过程判别方法及基于相似因子的工况自适应匹配方法,将其融入PCA构建了新的故障检测方法,且将该方法用于电站锅炉补给水处理流程的故障检测。以该流程的全工况运行数据对算法进行了验证,结果表明:此方法能有效消除过渡过程的影响,并能通过工况匹配提高故障检测性能且减少故障误报,可以实现水处理流程的全工况故障检测。 There exists a multi-steady-state operating condition switching-over and their transient process in a complex industrial flow path,causing the traditional principal component analysis and fault detection method easily to mistakenly alarm a fault. As a result,the authors proposed a transient process identification method based on the steady-state factors and an operating condition self-adaptive matching method based on the similarity factors and incorporated them into the principal component analytic method to form a new fault detection method. The method in question was used for detecting faults in the makeup and feedwater treatment flow path of a utility boiler and verified by using the operating data of the flow path under all operating conditions. It has been found that the method under discussion can effectively eliminate the influence of the transient process and enhance the fault detection performance and reduce the number of faults mistakenly alarmed through a matching of the operating conditions,thus accomplishingthe fault detection of the water treatment flow path under all operating conditions.
出处 《热能动力工程》 CAS CSCD 北大核心 2015年第1期66-71,164,共6页 Journal of Engineering for Thermal Energy and Power
关键词 锅炉补给水处理流程 全工况 主元分析法 过渡过程 工况匹配 boiler makeup wa-ter and feedwater treatment flow path,full-load operating condition,principal component analytic method,transient process,operating condition matching
  • 相关文献

参考文献14

  • 1Abdi H, Williams L J. Principal component analysis[ J]. Wiley In- terdisciplinary Reviews: Computational Statistics,2010,2(4) :433 - 459.
  • 2DING S,ZHANG P,DING E,YIN S,Naik A,DENG P,GUI W.On the Application of PCA Technique to Fault Diagnosis[J].Tsinghua Science and Technology,2010,15(2):138-144. 被引量:34
  • 3Jieng Q, Yan X, zhao W. Fouh detection and diagnosis in chemical processes using sensitive principal component analysis [ J]. Indus- trial & Engineering chemistry Research, 2013,52 ( 4 ) : 1635 - 1644.
  • 4周东华,胡艳艳.动态系统的故障诊断技术[J].自动化学报,2009,35(6):748-758. 被引量:308
  • 5Yin S, Ding S X, Haghani A, et al. A comparison study of basic da- ta-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process [ J ]. Journal of Process Control,2012,22(9) : 1567 - 1581.
  • 6Li G, Alcala C F, Qin S J, et al. Generalized reconstruction-based contributions for output-relevant fault diagnosis with application to the Tennessee Eastman process [ J ]. Control Systems Technology, IEEE Transactions on,2011,19 (5) : 1114 - 1127.
  • 7Alkaya A, Eker i. Variance sensitive adaptive threshold-based PCA method for fault detection with experimental application [ J]. ISA transactions ,2011 ri0(2 ) :287 - 302.
  • 8Alcala C F,Joe Qin S. Analysis and generalization of fault di- agnosis methods for process monitoring [ J ]. Journal of Process Can- trol,2011,21 (3) :322 -330.
  • 9Wang S, Cui J. Sensor-fauh detection, diagnosis and estimation for centrifugal chiller systems using principal-component analysis method [ J ]. Applied Energy,2005,82 ( 3 ) : 197 - 213.
  • 10黄孝彬,刘吉臻,牛玉广.主元分析方法在火电厂锅炉过程故障检测中的应用[J].动力工程,2004,24(4):542-547. 被引量:28

二级参考文献141

  • 1周东华,孙优贤,席裕庚,张钟俊.一类非线性系统参数偏差型故障的实时检测与诊断[J].自动化学报,1993,19(2):184-189. 被引量:26
  • 2孙卫祥,陈进,伍星,董广明,宁佐贵,王东升,王雄祥.基于信息融合的支撑座早期松动故障诊断[J].上海交通大学学报,2006,40(2):239-242. 被引量:13
  • 3邵晨曦,张俊涛,范金锋,白方周.基于定性定量知识的故障诊断[J].计算机工程,2006,32(6):189-191. 被引量:3
  • 4谭阳红,叶佳卓.模拟电路故障诊断的小波方法[J].电子与信息学报,2006,28(9):1748-1751. 被引量:20
  • 5王洪江,孙保民,田进步.定性仿真在锅炉状态监控和故障诊断中的应用[J].工程热物理学报,2007,28(1):12-14. 被引量:4
  • 6Rajakarunakaran S, Venkat P, Devaraj D, Surya P R K. Artificial neural network approach for fault detection in LPG transfer system. Applied Soft Computing, 2008, 8(1): 740 - 748
  • 7Quteishat A, Lim C P. A modified fuzzy min-max neural network with rule extraction and its application to fault detection and classification. Applied Soft Computing, 2008, S(2): 985-995
  • 8Dong L X, Xiao D M, Liang Y S, Liu Y L. Rough set and fuzzy wavelet neural network integrated with least square weighted fusion algorithm based fault diagnosis research for power transformers. Electric Power Systems Research, 2008, 78(1): 129-136
  • 9Thukaram D, Khincha H P, Vijaynarasimha H P. Artificial neural network and support vector machine approach for locating faults in radial distribution systems. IEEE Transactions on Power Delivery, 2005, 20(2): 710-721
  • 10Jack L B, Nandi A K. Support vector machines for detection and characterization of rolling element bearing faults. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2001, 215(9): 1065-1074

共引文献365

同被引文献18

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部