期刊文献+

NGF电纺纤维的体外缓释研究 被引量:2

In Vitro Sustained Release Research of NGF Electrospun Fibers
原文传递
导出
摘要 目的:研究担载神经生长因子(NGF)的静电纺丝纤维的表征,考察NGF电纺纤维对于周围神经修复的效果。方法:将NGF水溶液分散于PLLA溶液,通过W/O乳液法制备静电纺丝纤维,对纤维的形态、力学性能等进行表征,Elisa方法测定NGF的体外释放动力学,Alamer Blue法检测试剂来考察纤维释放液对于PC12细胞增殖的影响。结果:NGF电纺纤维具备良好的形态和力学性质,直径为500-900 nm,纤维具备三维多孔结构。纤维的最大拉伸应力为2.50±0.41 MPa。电纺纤维中NGF在体外可有效释放9天,累积释放量接近3000 pg。细胞活性实验结果显示,第1、3、5、7天释放液的荧光强度与对照组相比有显著差异。结论:担载NGF的乳液法静电纺丝纤维有促进缺损周围神经修复的潜质。 Objective: To investigate characterization and effect on peripheral nerve repair of NGF electrospun fibers. Methods:NGF solution was dispersed into PLLA solution, and then electrospun fibers were fabricated by W/O emulsion method. The morphology and mechanical properties of the electrospun fibers were characterized and release kinetic of NGF in fibers was detected by NGF Elisa kit. The effect of release solution on cell activity was tested by Alamer Blue. Results: The NGF emulsion electrospun fibers had good morphology and mechanical properties. The fibers had porous structure with diameters between 500 nm and 900 nm. The maximum tensile stress of fibers was 2.50±0.41 MPa. NGF in fibers had sustained release for 9 days in vitro with a cumulative release of nearly3000 pg. Statistical difference was found in fluorescence intensity of release solution compared to blank group in cell viability experiment. Conclusions: NGF emulsion electrospun fibers provide a promising approach in the application of peripheral nerve repair.
出处 《现代生物医学进展》 CAS 2014年第33期6404-6406,共3页 Progress in Modern Biomedicine
基金 国家自然科学基金项目(81102406)
关键词 静电纺丝纤维 神经导管 NGF PLLA 神经修复 Electrospun fibers Nerve conduit NGF PLLA Nerve repair
  • 相关文献

参考文献22

  • 1Burnett MG, Zager EL. Pathophysiology of peripheral nerve injury: a briefreview[J]. Neuro surg Focus, 2004,16(5): 1-7.
  • 2Pabari A, Yang SY, Seifalian AM, et al. Modern surgical management of peripheral nerve gap[J]. Journal of Plastic, Reconstructive & Aesthetic Surgery, 2010, 63(12): 1941-1948.
  • 3Panseri S, Cunha C, Lowery J, et al. Electrospun micro-and nanofiber tubes for functional nervous regeneration in sciatic nerve transections[J]. BMC biotechnology, 2008,8(1): 39.
  • 4Chen MB, Zhang F, Lineaweaver WC. Luminal fillers in nerve conduits for peripheral nerve repair[J]. Ann Plast Surg, 2006, 57(4): 462-471.
  • 5Liu Y, Hou CL. Current development of nerve guid conduits[J]. International Journal of Orthopaedics. 2010, 31(5): 279-281.
  • 6Panseri S, Cunha C, Lowery J, et al, Eiectrospun micro- and nanofiber tubes for functional nervous regeneration in sciatic nerve transections[J]. BMC Biotechnol, 2008, 8(1): 39.
  • 7Evans G. R. Challenges to nerve regeneration[J]. Semin Surg Oncol, 2000,19(3): 312-318.
  • 8Langer R, Vacanti JP. Tissue engineering[J]. Science, 1993, 260 (511 0): 920-926.
  • 9Chew SY, Mi RF, Hoke A, et al. Aligned protein-polymer composite fibers enhance nerve regeneration: A potential tissue-engineering plat-form[J]. Advanced Functional Materials, 2007, 17(8): 1288-1296.
  • 10Zhou J, Cao CB, Ma XL, et al. Electrospinning of silk fibroin and collagen for vascular tissue engineering[J]. International Journal of Biological Macromolecules, 2010, 47(4): 514-519.

二级参考文献35

共引文献6

同被引文献4

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部