期刊文献+

Stability in the Shephard Problem for L_p-Projection of Convex Bodies

Stability in the Shephard Problem for L_p-Projection of Convex Bodies
原文传递
导出
摘要 In this article, we study the convex bodies associated with Lp-projections in the Brunn-Minkowski-Firey theory, and apply the Fourier analytic methods to prove the linear stability in the Shephard problem for Lp-projections of convex bodies. In this article, we study the convex bodies associated with Lp-projections in the Brunn-Minkowski-Firey theory, and apply the Fourier analytic methods to prove the linear stability in the Shephard problem for Lp-projections of convex bodies.
出处 《Wuhan University Journal of Natural Sciences》 CAS 2014年第4期283-288,共6页 武汉大学学报(自然科学英文版)
基金 Supported by the National Natural Science Foundation of China(11161019)
关键词 STABILITY convex bodies Lp-projections FOURIERTRANSFORM stability convex bodies Lp-projections Fouriertransform
  • 相关文献

参考文献20

  • 1Minkowski H. Volumen and oberflache[J]. Math Ann, 1903, 57: 447-495.
  • 2Groemer H. Stability of Geometric Inequalities, Handbook of Convexity[M]. Amsterdam: North-Holland, 1993.
  • 3Liu L J, Wang W, He B W. Fourier transform and L - mixed projection bodies[J]. Bull Korean Math Soc, 2010, 47: 1011-1023.
  • 4Koldobsky A. Stability in the Busemann-Petty and Shephard problems[J]. Adv Math, 2011,228: 2145-2161.
  • 5Koldobsky A, Yaskin V, Yaskina M. Modified Busemann- Petty problem on sections of convex bodies[J]. Israel J Math, 2006, 154: 191-207.
  • 6Lutwak E, Yang D, Zhang G Y. Lp-Affine isopermetric ine- qualities[J]. JDifferential Geom, 2000, 56:111-132.
  • 7Ryabogin D, Zvavitch A. The Fourier transform and Fireyprojections of convex bodies[J]. Indiana Univ Math J, 2004, 53: 667-682.
  • 8Ma T Y. On the analog of Shephard problem for the Lp-pro- jection body[J]. Math InequalAppl, 2011, 14: 181-192.
  • 9Lutwak E. The Brunn-Minkowski-Firey theory II: Affine and geominimal surface areas[J]. Adv Math, 1996, 118: 244-294.
  • 10Lutwak E. The Brunn-Minkowski-Firey theory 1: Mixed volumes and the Minkowski problem[J]. J Differential Geom, 1993, 38: 131-150.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部