期刊文献+

多喷嘴对置式气化炉内气固两相流动与炉壁的颗粒捕捉特性 被引量:4

The Gas-Solid Flow and Characteristics of Particles Capture by the Wall in an Opposed Multi-Burner Gasifier
下载PDF
导出
摘要 对多喷嘴对置式气化炉内复杂的气固两相流动与炉壁的颗粒捕捉特性进行三维数值模拟。应用Euler-Lagrange模型模拟气固两相流动,采用Realizable k-ε湍流模型计算炉内气相湍流流场,颗粒轨迹跟踪采用随机轨道模型。模拟结果与冷模测试数据吻合,且流场与热模实验现象一致,壁面捕捉颗粒平均粒径与热态水煤浆气化实验数据吻合。工业规模模拟结果表明,壁面捕捉的颗粒平均粒径呈现一定的规律性,存在两个极大值位置,分别在喷嘴平面下方0.2 m及上方2.8 m处,在喷嘴平面上方,壁面捕捉颗粒粒径随颗粒密度的增大而减小;颗粒沉积能基本覆盖整个炉膛内壁,颗粒在撞击流股作用下在喷嘴平面上方1.8 m及下方1.9 m处沉积量最大;缩短喷嘴上方直段高度将影响炉内流场,拱顶对撞击流股产生一定的限制作用,使其变短变宽,并且使拱顶捕捉颗粒粒径增加,颗粒沉积速率增加。 3D numerical simulation was conducted to investigate the gas-solid two phase flows and particle capture characteristics of the wall in an opposed multi-burner gasifier. The Realizable k-εmodel was used to calculate the complex turbulent gas flow, Euler-Lagrange model was used to simulate turbulent gas-solid flows in the gasifier, while stochastic trajectory model was adopted to trace particles trajectories. The simulation results agree with the experimental data of cold model reasonably well, the flow field conforms to the phenomenon of the hot model experimental results, and the average diameter of the particles the gasifier wall captured is consistent with the experimental data of hot model. The results show that the average diameter of particles captured by the wall of gasifier wall presents certain regularity. There are two positions (2.8 m above and 0.2 m below the burner plane) where the average diameter of the particles has local maximums. Above the burner plane, the captured particle diameters decrease as the density of the particles increases. The particle deposition covers the entire lining of gasifier, and with the effect of impacting stream the deposition rate reaches the greatest at positions of 1.8 m above and 1.9 m below the burner plane respectively. Shortening the straight segments above the burner plane affects the flow field in the furnace, the impacting stream restricted by the dome becomes shorten and widen, and makes the average diameter of particles the dome captured and the deposition rate increase.
出处 《高校化学工程学报》 EI CAS CSCD 北大核心 2014年第5期957-964,共8页 Journal of Chemical Engineering of Chinese Universities
基金 国家自然科学基金(21176078) 国家重点基础研究计划项目(2010CB227006)
关键词 多喷嘴对置式 气流床气化 颗粒运动规律 CFD 气固两相流 opposed multi-burner entrained-flow gasification particles capture computational fluiddynamics (CFD) gas-solid flow
  • 相关文献

参考文献20

  • 1Liu H W,Ni W D,Li Z,et al.Strategic thinking on IGCC development in China[J].Energy Policy,2008,36(1):1-11.
  • 2刘欢鹏,刘玉成,李巍.DSMC-LES方法数值模拟鼓泡流化床内气泡和颗粒流动行为[J].高校化学工程学报,2006,20(2):180-185. 被引量:5
  • 3刘小云,罗坤,金军,岑可法.气固两相湍流射流中颗粒的统计特性[J].中国电机工程学报,2005,25(9):108-113. 被引量:7
  • 4李响,孙丹,陈巨辉,王帅,白颖华,陆慧林.梯度磁场下气固流化床中磁颗粒运动数值模拟[J].高校化学工程学报,2010,24(1):52-57. 被引量:7
  • 5Chu K W,Wang B,Xu D L,et al.CFD-DEM simulation of the gas-solid flow in a cyclone separator[J].Chemical Engineering Science,2011,66(5):834-847.
  • 6Washino K,Tan H S,Salman A D,et al.Direct numerical simulation of solid-liquid-gas three-phase flow:fluid-solid interaction[J].Powder Technology,2011,206(1-2):161-169.
  • 7Choi Y C,Li X Y,Park T J,et al.Numerical study on the coal gasification characteristics in an entrained flow coal gasifier[J].Fuel,2001,80(15):2193-2201.
  • 8吴玉新,张建胜,岳光溪,吕俊复.用于Texaco气化炉同轴射流计算的不同湍流模型的比较[J].化工学报,2007,58(3):537-543. 被引量:20
  • 9Guo Q H,Liang Q F,Ni J J,et al.Markov chain model of residence time distribution in a new type entrained-flow gasifier[J].Chemical Engineering and Processing,2008,47(12):2061-2065.
  • 10Ni J J,Liang Q F,Guo Q H,et al.Stochastic modeling of the particle residence time distribution in an opposed multi-burner gasifier[J].Chem Eng Technol,2008,31(10):1487-1497.

二级参考文献80

共引文献68

同被引文献44

  • 1刘欢鹏,刘玉成,李巍.DSMC-LES方法数值模拟鼓泡流化床内气泡和颗粒流动行为[J].高校化学工程学报,2006,20(2):180-185. 被引量:5
  • 2王辅臣,于广锁,龚欣,吴韬,于遵宏.射流携带床气化炉内宏观混合过程研究(Ⅰ) 冷态浓度分布[J].化工学报,1997,48(2):193-199. 被引量:29
  • 3王辅臣,龚欣,吴韬,于广锁,于遵宏.射流携带床气化炉内宏观混合过程研究(Ⅱ)停留时间分布[J].化工学报,1997,48(2):200-207. 被引量:19
  • 4Zhang H L, Degrrve J, Baeyens J, et al. The voidage in a CFB riser as function of solids flux and gas velocity [J]. Procedia Engineering, 2015, 102: 1112-1122.
  • 5Luo K, Wu F, Yang S L, et al. High-fidelity simulation of the 3-D full-loop gas-solid flow characteristics in the circulating fluidized bed [J]. Chemical Engineering Science, 2015, 123: 22-38.
  • 6Lu H, Chert J H, Liu G D, et al. Simulated second-order moments of clusters and dispersed particles in riser [J]. Chemical Engineering Science, 2013, 101: 800-812.
  • 7Zhou H S, Gilles F, Daniel G. Modelling of the turbulent gas-particle flow structure in a two-dimensional circulating fluidized bed riser [J]. Chemical Engineering Science, 2007, 62: 269-280.
  • 8Martinez D M, Jiang X. Large-eddy simulations of unsteady hydrogen annular flames [J]. Computers & Fluids, 2013, 80(S1): 429-440.
  • 9Roger H S, Edward G E Canopy element influences on resolved- and subgrid-scale energy within a large-eddy simulation [J]. Agricultural and Forest Meteorology, 2003, 115(1-2): 5-17.
  • 10Liu N S, Lu X Y. Large eddy simulation of turbulent flows in a rotating concentric annular channel [J]. International Journal of Heat and Fluid Flow, 2005, 26(3): 378-392.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部