期刊文献+

一种基于路口预测的移动机器人路径规划方法

A path planning of mobile robots based on the prediction of path entry point
原文传递
导出
摘要 现实中受限于传感器数量及功能的限制,机器人难免存在各种感知盲区,故此类条件下如何实现局部路径规划,安全到达目标,是一大难点问题。以路口点代表自由路径的入口,基于无色卡尔曼滤波算法跟踪并估算盲区内路口点位置及其概率分布,从而实现当自由路径进入盲区后的信息记忆与利用。建立评价函数对盲区内及感知范围内的路口点进行统一评价,进而实现了同时基于历史信息与当前感知信息搜寻最优路口点。研究结果表明:与传统局部路径规划方法相比,该方法减少了盲区带来的机器人无效徘徊、规划失败等问题,提升了此类条件下移动机器人的路径规划能力。 Because of limited number and limited capability of sensors,mobile robot exists perception blind zone inevitably,so how to realize the path planning and safe arrive target is a common and practical problem.The"entry point"was introduced to represent the free road entrance,the location and probability distribution of"entry point"in blind zone were tracked and estimated based on uncented kalman filte algorithm.Then the historical sensor information is memorized and used after the free road enter into blind zone.All"entry points"were evaluated within blind zone and perception zone by set up a valuate function,so that a best free road point would be found based on both the historical and the latest sensor information.The results show that compared with the traditional local path planning approaches,the trap and hover problem are reduced with the blind zone,and path planning capacity of mobile robots is improved.1tab,18 figs,15refs.
出处 《长安大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第5期138-145,共8页 Journal of Chang’an University(Natural Science Edition)
基金 中央高校基本科研业务费专项资金项目(CHD 2011JC176 CHD2011JC105 2014G1221014 CHD2011TD-15) 国家自然科学基金项目(51108040) 中国博士后基金项目(2013M531999)
关键词 移动机器人 局部路径规划 自由路径 盲区 mobile robot local path planning free road blind zone
  • 相关文献

参考文献15

  • 1Huang W H,Fajen B R,Fink J R,et al. Visual navi- gation and obstacle avoidance using a steering poten- tial function[J]. Robotics and Autonomous Systems, 2006,54 (4) 288-299.
  • 2Huang B,Cao G,Fei Y,et al. Fuzzy controller for the autonomous mobile robot path planning[J]. Journal of Computational Information Systems, 2007,3 (1) 1-8.
  • 3Wang M,Liu J N K. Fuzzy logic-based real-time robot navigation in unknown environment with dead ends [J]. Robotics and Autonomous Systems, 2008,56 (7) : 625-643.
  • 4Ulrich I, Borenstein J. VFH + Reliable obstacle a- voidance for fast mobile robots [C]//IEEE. Interna- tional Conference on Robotics and Automation. Leu- yen, Belgium.. IEEE, 1998 .. 1572-1577.
  • 5Ulrich I, Borenstein J. VFH * .. local obstacle avoid- ante with look-ahead verification[C]//IEEE. Interna- tional Conference on Robotics and Automation. San Francisco IEEE, 2000 2505-2511.
  • 6陈华志,谢存禧,曾德怀.基于神经网络的移动机器人路径规划算法的仿真[J].华南理工大学学报(自然科学版),2003,31(6):56-59. 被引量:28
  • 7Chan R H T,Tam P K S,Leung D N K. Solving the motion planning problem by using neural networks [J]. Robotica, 1994,12(4) : 323-333.
  • 8Fox D, Burgard W, Thrun S. Controlling synchro- drive robots with the dynamic window approach to collision avoidance[C]//IEEE. International Confer- ence on Intelligent Robots and Systems, IROS. Osaka: IEEE, 1996 : 1280-1287.
  • 9Fox D, Burgard W, Thrun S. The dynamic window ap- proach to collision avoidance[J]. IEEE Robotics and Automation Magazine, 1997,4 ( 1 ) : 23-33.
  • 10Ogren P, Leonard N E. A convergent dynamic window approach to obstacle avoidance[J]. IEEE Transactions on Robotics, 2005,21 (2) : 188-195.

二级参考文献14

  • 1张捍东,郑睿,岑豫皖.移动机器人路径规划技术的现状与展望[J].系统仿真学报,2005,17(2):439-443. 被引量:120
  • 2樊晓平,李双艳,陈特放.基于新人工势场函数的机器人动态避障规划[J].控制理论与应用,2005,22(5):703-707. 被引量:40
  • 3韩永,刘国栋.动态环境下基于人工势场的移动机器人运动规划[J].机器人,2006,28(1):45-49. 被引量:36
  • 4Ulrich I, Borenstein J. VFH+ : Reliable Obstacle Avoidance for Fast Mobile Robots[C]// Proceedings of the 1998 IEEE International Conference on Robotics and Automation. Leuven, Belgium: IEEE, 1998: 1572-1577.
  • 5Huang B, Cao G, Fei Y, et al. Fuzzy Controller for the Autonomous Mobile Robot Path Planning [J].Journal of Computational Information Systems, 2007, 3(1): 1-8.
  • 6Ko N Y,Lee B H. Avoidability Measure in Moving Obstacle Avoidance Problem and Its Use for Robot Motion Planning[C]//Proceedings of the 1996 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS. Osaka,Japan: IEEE, 1996: 1296-1303.
  • 7Hide C, Moore T, Smith M. Adaptive Kalman Filtering Algorithms for Integrating GPS and Low Cost INS [C]// PLANS -- 2004 Position Location and Naviga tion Symposium. Monterey, CA, United states: Institute of Electrical and Electronics Engineers Inc. , 2004; 227-233.
  • 8Dan S. Application of neural networks to optimal robot trajectory planning [ J]. Robotics and Autonomous Systems, 1993,11 ( 1 ) :23 -34.
  • 9Zhu D, Latombe J C. New heuristic algorithms for efficient hierarchical path planning [ J ]. IEEE Trans, On Robotics and Automation, 1991,7 ( 1 ) :9 - 18.
  • 10Chang C C, Song Kai-Tai. Environment prediction for a mobile robot in a dynamic environment [ J ]. IEEE Trans On Robotics and Automation, 1997, 13(61) : 862 -872.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部