期刊文献+

两个不同耐铝玉米自交系根系对铝毒胁迫的响应 被引量:3

Responses of two maize inbred lines of different aluminium tolerance to Alinduced oxidative stress
原文传递
导出
摘要 通过铝(Al)毒胁迫处理,检测两个不同耐Al玉米自交系(耐Al自交系178和Al敏感自交系Mo17)根系氧化胁迫相关指标如Al含量、H2O2含量、丙二醛(MDA)含量,抵御氧化胁迫的过氧化物酶(POD)活性及细胞壁木质素含量,以期为揭示Al毒抑制玉米根系发育的机制提供佐证.结果表明,Al毒处理后,两个玉米自交系根系的Al含量、H2O2含量、MDA含量、木质素含量和POD活性均有所增加.当Al处理24 h时,这些生理指标变化最大.其中,178中木质素含量和POD活性增加幅度大于Mo17,分别为0.126 OD和2.04 U;而Mo17中Al含量、H2O2含量和MDA含量增加幅度更大,分别为1.835μg g-1、16.71μmol g-1和40.2 nmol g-1.综上,玉米根系的生长抑制与Al诱导的膜脂过氧化有关,而根系细胞抗氧化酶POD的活性及木质素含量的变化是玉米对Al毒胁迫的一种诱发性防御反应. Aluminium(Al) toxicity seriously inhibits root growth and development of plants in acid soils. Root growth inhibition is the most obvious phenotype observable shortly after Al exposure. Previous reports believed Al triggered oxidative stress and further activated defense responses of plant. In China maize is seriously stressed by Al due to the rapid spread of acid soil, but the reason of root growth inhibition is still unknown. This study aimed to understand the mechanism of root growth inhibition under Al stress. We investigated the parameters relative to oxidative stress, including content of aluminium, hydrogen peroxide(H2O2), malondialdehyde(MDA), and those involved in defense responses such as oxidative stress activity of peroxidase and content of lignin. The result showed that all values, including content of Al, H2O2, MDA, content of lignin, activity of peroxidase, increased in both maize lines after Al treatment. Notably, after Al exposure for 24 h, the changes of the physiological parameters were in maximum. Meanwhile, lignin content and the activity of peroxidase were increased, up to the peak value of 0.126 OD and 2.04 U, respectively, in the Al tolerant 178, much higher than that of the Al sensitive Mo17. On the contrary, the maximum content of Al, H2O2 and MDA in Mo17 was 1.835 μg g-1, 16.71 μmol g-1, 40.2 nmol g-1, respectively, after Al treatment, much higher than that in 178. These results suggested that the inhibition of maize root growth is correlated with the Al-induced lipid peroxidation, and that the changes of lignin content and activity of peroxidase may be a defense response caused by Al toxicity in maize.
出处 《应用与环境生物学报》 CAS CSCD 北大核心 2014年第4期669-674,共6页 Chinese Journal of Applied and Environmental Biology
基金 国家重点基础研究发展计划项目(2014CB138705) 国家自然科学基金项目(3080 0687 31071434) 教育部博士点基金项目(1.20125103110011) 教育部回国留学人员启动基金 四川省科技厅学术和技术带头人培养基金资助~~
关键词 玉米 铝毒 非生物胁迫 膜脂过氧化 木质素 Zea mays aluminium toxicity abiotic stress lipid peroxidation lignin
  • 相关文献

参考文献29

  • 1Kochian LV. Cellular mechanisms of aluminum toxicity and resistance in plants [J]. Annu Rev Plant Biol, 1995, 46: 237-260.
  • 2Ma JF, Ryan PR. Understanding how plants cope with acid soils [J]. Funct Plant Biol, 2010, 37: iii-vi.
  • 3Ahn SJ, Matsumoto H. The role of the plasma membrane in the response of plant roots to aluminum toxicity [J]. Plant Signal Behav, 2006, 1: 37-45.
  • 4Exley C. The pro-oxidant activity of aluminum [J]. Free Radical Biol Med, 2004, 36: 380-387.
  • 5Hossain MA, Hossain AKMZ, Kihara T, Koyama H, Hara T. Aluminum-induced lipid peroxidation and lignin deposition are associated with an increase in H2O2 generation in wheat seedlings [J]. Soil Sci Plant Nutr, 2005, 51: 223-230.
  • 6Guo TR, Zhang GP, Zhou MX, Wu FB, Chen JX. Effects of aluminum and cadmium toxicity on growth and antioxidant enzyme activities of two barley genotypes with different Al resistance [J]. Plant Soil, 2004, 258: 241-248.
  • 7Ma BH, Gao L, Zhang HX, Cui J, Shen ZG. Aluminum-induced oxidative stress and changes in antioxidant defenses in the roots of rice varieties differing in Al tolerance [J]. Plant Cell Rep, 2012, 31: 687-696.
  • 8Xue YJ, Tao L, Yang ZM. Aluminum-induced cell wall peroxidase activity and lignin synthesis are differentially regulated by jasmonate and nitric oxide [J]. J Agric Food Chem, 2008, 56: 9676-9684.
  • 9Kobayashi Y, Yamamoto Y, Matsumoto H. Studies on the mechanism of aluminum tolerance in pea (Pisum sativum L.) using aluminum-tolerant cultivar ‘Alaska’ and aluminum-sensitive cultivar ‘Hyogo’ [J]. Soil Sci Plant Nutr, 2004, 50: 197-204.
  • 10Cakmak I, Horst WJ. Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max) [J]. Physiol Plant, 1991, 83: 463-468.

二级参考文献43

  • 1张丽梅,贺立源,李建生,徐尚忠.玉米自交系耐低磷材料苗期筛选研究[J].中国农业科学,2004,37(12):1955-1959. 被引量:50
  • 2李刚华,丁艳锋,薛利红,王绍华.利用叶绿素计(SPAD-502)诊断水稻氮素营养和推荐追肥的研究进展[J].植物营养与肥料学报,2005,11(3):412-416. 被引量:150
  • 3章爱群,贺立源,李德华,张丽梅.酸胁迫对不同基因型玉米生长和养分吸收的影响[J].植物营养与肥料学报,2007,13(4):548-553. 被引量:12
  • 4Baligar VC, Pitta GVE, Gama EEG, Schaffert RE, de C Bahia Filho AF., Clark RB. Soil acidity effects on nutrient use efficiency in exotic maize genotypes. Plant & Soil, 1997, 192: 9-13
  • 5Kochian LV, Hoekenga OA, Pineros MA. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol, 2004, 55: 459-493
  • 6Kochian LV. Cellular mechanisms of aluminum toxicity and resistance in plants. Plant Mol Biol, 1995, 46: 237-260
  • 7Ferrufino A, Smyth TJ, Israel DW, Jr Carter TE. Root elongation of soybean genotypes in response to acidity constraints in a subsurface solution compartment. Crop Sci, 2000, 40: 413-421
  • 8Foy CD, Duke JA, Devine TE. Tolerance of soybean germplasm to an acid Tatum subsoil. Plant Nutr, 1992, 15: 527-547
  • 9Shao JZ, Jian LY, Yun FH, Xue HY, Lei Z, Jiang FY, Ren FS, Hideaki M. Immobilization of aluminum with phosphorus in roots is associated with high aluminum resistance in wheat. Plant Physiol, 2005 138: 297-303
  • 10Ayalew L, Hong S, Koichi S, Yoko Y, Shigemi T, Hideaki M. The role of phosphorus in aluminium -induced citrate and malate exudation from rape (Brassica napus). Physiol Plantarum, 2004, 120: 575-584

共引文献15

同被引文献32

引证文献3

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部