期刊文献+

一种基于SVM的胶囊内窥镜出血智能识别方法 被引量:2

A Method for Bleeding Detection in Endoscopy Images Using SVM
下载PDF
导出
摘要 由于Wireless Capsule Endoscopy(WCE)在消化道中采集到的巨大数量的图像均需要医务人员靠肉眼来排查,给医生带来巨大的负担。该文提供了一种基于支持向量机(Support Vector Machine,SVM)分类器的胶囊内窥镜出血智能识别方法,创立一种新的特征参数,并对SVM参数的选择进行实验优化,最终达到94%的特异度与83%的灵敏度。 Because the huge number of images of the digestive tract by Wireless Capsule Endoscopy(WCE) are left to the medical personnels detected by their eyes, huge burden leaves to doctors. This article provides a classification of method based on SVM(Support Vector Machine) for the capsule endoscopy bleeding intelligent recognition. We created a new kind of feature parameter, and the experiment result can reach 83% specificity and 94% sensitivity.
出处 《中国医疗器械杂志》 CAS 2015年第1期9-12,共4页 Chinese Journal of Medical Instrumentation
基金 国家自然科学基金(31170968)
关键词 特征提取 SVM 出血检测 无线胶囊内窥镜 颜色空间 feature selection SVM bleeding detection wireless capsule endoscopy color space
  • 相关文献

参考文献12

  • 1Basar MR, Malek F, Juni KM, et al. Ingestible wireless capsule technology: a review of development and future indication[J]. Int J Antennas Propagation, 2012, doi:10.1155/2012/807165.
  • 2Bourbakis N, Makrogiannis S, Kavraki D. A neural network-based detection of bleeding in sequences of WCE images[C]. Fifth IEEE Syrup Bioinform Bioeng, 2005, 324-327.
  • 3Pan G, Yan G, Qiu X, et al. Bleeding detection in wireless capsule endoscopy based on probabilistic neural network[J]. J Med Syst, 2011,35(6): 1477.
  • 4Buscaglia JM, Giday SA, Kantsevoy SV, et al. Performance characteristics of the suspected blood indicator feature in capsule endoscopy according to indication for study[J]. Clin Gastroenterol Hepatol, 2008, 6(3): 298-301.
  • 5Liu J, Yuan X. Obscure bleeding detection in endoscopy images using support vector machines[J]. Optimiz Eng, 2009, 10(2): 289- 299.
  • 6Li B, Meng MQH. Computer-aided detection of bleeding regions for capsule endoscopy images[J]. IEEE Trans Biomed Eng, 2009, 56(4): 1032-1039.
  • 7Poh CK, Htwe TM, Li L, et al. Multi-level local feature classification for bleeding detection in wireless capsule endoscopy images[C]. IEEE Conf Cybernetics Intelligent Syst, 2010,76-81.
  • 8Lau PY, Correia PL. Detection of bleeding patterns in WCE video using multiple features[C]. IEEE EMBS, 2007, 5601-5604.
  • 9Mackiewicz MW, Fisher M, Jamieson C. Bleeding detection in wireless capsule endoscopy using adaptive colour histogram model and support vector classification[C]. Med Imaging Int Society Optics Photonics, 2008:69140R-69140R- 12.
  • 10Li B, Meng MQH. Computer-aided detection of bleeding regions for capsule endoscopy images[J]. IEEE Trans Biomed Eng, 2009, 56(4):1032-1039.

同被引文献14

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部