期刊文献+

基于自组装原位生长法制备聚苯胺/CNTs纳米复合物修饰叉指电极的葡萄糖生物传感器 被引量:4

Glucose biosensor based on self assembled-in situ polymerized polyaniline /CNTs nanocomposite modified interdigitalelectrode
下载PDF
导出
摘要 采用自组装原位生长制备基于聚苯胺/CNTs 纳米复合物修饰叉指电极的葡萄糖生物传感器. 首先采用自组装的方式制备CNTs 修饰叉指电极,并采用对甲苯磺酸掺杂聚苯胺,原位在修饰电极表面生长聚苯胺,制备了PANI/CNTs 修饰电极; 然后将葡萄糖氧化酶固定在修饰电极表面制备了葡萄糖生物传感器. 采用拉曼光谱、扫描电子显微镜、原子力显微镜等对所制备的PANI/CNTs 复合物进行了表征分析;采用循环伏安法和电化学阻抗法研究了修饰电极的电化学行为. 传感器性能评价结果表明:在最优化条件下,葡萄糖浓度与响应电流在0.5-30 mmol/L 范围内呈现良好的线性关系, 响应灵敏度为62.17 μA/(mmol·L^-1), 线性相关系数为0.997,检出限为0.15 mmol/L(S/N = 3),并具有良好的重现性和稳定性. Glucose biosensors based on self assembled -in situ polymerized polyaniline /CNTs nanocomposite modifiedinterdigitalelectrode were prepared. Firstly, CNTs modified interdigital electrode was prepared by self assemblingprocess, and PANI/CNTs was prepared using p -toluene sulfonic acid doped polyaniline in situ polymerizedaniline on the electrode surface; then glucose biosensor was prepared by immobilization of glucose oxidase on theas prepared modified electrode surface. The PANI/CNTs nanocomposites were characterized by Raman spectraanalysis, scanning electron microscopy and atomic force microscopy; electrochemical behaviors of the modifiedelectrode were characterized by cyclic voltammetry and electrochemical impedance method. The results showedthat under the optimum conditions, glucose concentration and the response current showed a good linearrelationship in the range of 0.5-30 mmol/L with the response sensitivity of 62.17 μA/(mmol·L^-1), the linearcorrelation coefficient of 0.997, and the detection limit of 0.15 mmol/L (S/N=3). The biosensor also showed goodstability and reproducibility.
出处 《天津工业大学学报》 CAS 北大核心 2015年第1期17-21,共5页 Journal of Tiangong University
基金 国家自然科学基金(30900325) 天津市以及科技部中小企业创新基金(13ZXCXSY14200,13C26211200305)
关键词 聚苯胺 碳纳米管 葡萄糖氧化酶 生物传感器 自组装 polyaniline carbon nanotube glucose oxidase biosensor self assembled
  • 相关文献

参考文献25

  • 1TANNE J, DIETZEL B, SCHELLER F W, et al. Nanohybridmaterials consisting of poly [(3-aminobenzoic acid)-co-(3-aminobenzenesulfonic acid)-co-aniline] and multiwalled carbonnanotubes for immobilization of redox active cytochrome c[J]. Electroanalysis, 2014, 26(4): 732-738.
  • 2XIONG G P, MENG C Z, REIFENBERGER R G, et al.Graphitic petal electrodes for all-solid-state flexible supercapacitors[J]. Adv Energy Mater, 2014, 4(3):1-9.
  • 3YIN Z S, HU T H, WANG J L, et al. Preparation of highly activeand stable polyaniline-cobalt-carbon nanotube electrocatalystfor oxygen reduction reaction in polymer electrolyte membranefuel cell[J]. Electrochim Acta, 2014,119: 144-154.
  • 4XU Q, GU S X, JIN L Y, et al. Graphene/polyaniline/goldnanoparticles nanocomposite for the direct electron transfer ofglucose oxidase and glucose biosensing[J]. Sens Actuat B,2014, 190: 562-569.
  • 5CHOWDHURY A D, GANGOPADHYAY R, DE A. Highlysensitive electrochemical biosensor for glucose, DNA and proteinusing gold-polyaniline nanocomposites as a common matrix[J]. Sens Actuat B, 2014, 190: 348-356.
  • 6KAUSAITE-MINKSTIMIENE A, MAZEIKO V, RAMANAVICIENEA, et al. Evaluation of amperometric glucose biosensorsbased on glucose oxidase encapsulated within enzymaticallysynthesized polyaniline and polypyrrole[J]. Sen Actuat B,2011, 158(1): 278-285.
  • 7TANG N, ZHENG J B, SHENG Q L, et al. A novel H2O2 sensorbased on the enzymatically induced deposition of polyanilineat a horseradish peroxide/aligned single-wall carbon nanotubesmodified Au electrode [J]. Analyst, 2011, 136(4):781-786.
  • 8DHIBAR S, BHATTACHARYA P, HATUI G, et al. Transitionmetal-doped polyaniline/single-walled carbon nanotubesnanocomposites: Efficient electrode material for high performancesupercapacitors[J]. Acs Sustainable Chem Eng, 2014,2(5): 1114-1127.
  • 9SHARMA A L, KUMAR P, DEEP A. Highly sensitive glucosesensing with multi-walled carbon nanotubes-polyaniline composite[J]. Polymer-Plastics Technol Eng, 2012, 51(13):1382-1387.
  • 10POORAHONG S, THAMMAKHET C, THAVARUNGKUL P,et al. Cauliflower polyaniline/multiwalled carbon nanotubeelectrode and its applications to hydrogen peroxide and glucosedetection[J]. Pure Appl Chem, 2012, 84(10): 2055-2063.

二级参考文献10

共引文献4

同被引文献47

  • 1李铮,蔡晓兰,周蕾,易峰,余明俊.CNTs含量对CNTs/Al5083复合材料力学性能的影响[J].金属热处理,2015,40(1):175-177. 被引量:9
  • 2吴迪,吴健.卟啉的分子自组装[J].化学世界,2004,45(10):551-555. 被引量:5
  • 3王海侨,文芳岱,李效玉.分子自组装技术及其在发光器件制备上的应用[J].高分子通报,2006(4):35-41. 被引量:5
  • 4许晨,卢灿辉,丁马太.壳聚糖季铵盐的合成及结构表征[J].功能高分子学报,1997,10(1):51-55. 被引量:69
  • 5Choi H J, Min B H, Shin J H,et al. Strengthening in nanostructured 2024 aluminum alloy and its composites containing carbon nano- tubes [ J ]. Composites Part A:Applied Science and Manufacturing, 2011,42(10) :1438 - 1444.
  • 6Yoo S J, Han S H, Kim W J. Strength and strain hardening of alumi- num matrix composites with randomly dispersed nanometer-length fragmented carbon nanotubes [J]. Scripta Materialia, 2013,68 ( 9 ) : 711 -714.
  • 7Morsi K, Esawi A M K, Lanka S, et al. Spark plasma extrusion (SPE) of ball-milled aluminum and carbon nanotube reinforced aluminum composites[J].Composites Part A : Applied Science and Manufacturing, 2010,41 ( 2 ) : 322 - 326.
  • 8Alloui D, Bai S, Cheng H M ,et al. Mechanical and electrical prop- erties of a MWNT/epoxy composite [ J ]. Composite science and Technology,2002,62 : 1993 - 1998.
  • 9Sun Hongqi, Wang Shaobin. Research advances in the synthesis of nanocarbon-based photocatalysts and their application for photocat- alytic conversion of carbon dioxide to hydrocarbon thels [ J ]. Energy Fuels,2013,28( 1 ) :22 -36.
  • 10Lu Shaowei, Xu Weikai, Xiong Xuhai,et al. Preparation, magnetism and microwave adsorption performance of ultrathin Fe3Q/carbon nanotube sandwich buckypaper [J]. Journal of Alloys and Com- pounds,2014,606 : 171 - 176.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部