期刊文献+

一种基于Q矩阵理论朴素的认知诊断方法 被引量:22

A Simple Cognitive Diagnosis Method Based on Q-Matrix Theory
下载PDF
导出
摘要 现有的认知诊断方法均是在复杂的统计测量学知识基础上构建的,需要经过大量的运算才可实现对被试的诊断分类。这使得相关研究者及一线教师在理解和运用某一认知诊断方法时困难重重。相比之下,孙佳楠、张淑梅、辛涛和包钰(2011)提出的广义距离判别法(GDD)较其他认知诊断方法更简单易用且分类准确率高。本研究在改进的Q矩阵理论(丁树良,祝玉芳,林海菁,蔡艳,2009;丁树良,杨淑群,汪文义,2010)的基础上,借鉴GDD的思路,提出一种无需进行参数估计的朴素的认知诊断方法,即海明距离判别法(HDD)。根据判别方式的不同将其分为R方法和B方法。采用Monte Carlo模拟的研究方法,以模式判准率(PMR)和属性平均判准率(AAMR)作为衡量被试知识状态分类准确率的指标,与GDD进行比较。结果表明,HDD具有更简便的操作步骤和更好的分类准确率。 Cognitive diagnosis has recently gained prominence in educational assessment, psychiatric evaluation, and many other fields. Researchers have been trying their best to develop a new Cognitive Diagnosis Model(CDM) or to improve existing ones' performance for respondent classification. As a new CDM, GDD(Sun, Zhang, Xin, Bao, 2011) receives more and more attention due to its classification accuracy which is as high as DINA. This article introduces a new approach called Hamming Distance Discrimination(HDD) which is inspired by GDD and based on the Q-matrix theory(Tatsuoka, 1991) modified by Leighton et al.(2004) and Ding et al.(2009, 2010). HDD uses Hamming Distance(HD) to measure the distance between an examinee's Observed Response Pattern(ORP) and an Expected Response Pattern(ERP). When there are more than one ERPs with the same minimum HD for an examinee's ORP, two solutions based on HD are proposed: the random method(Method R) and the Bayesian method(Method B). Method R randomly chooses one ERP from those share the same minimum HD whereas in method B, we apply Bayesian Discriminant to distinguish which ERP the examinee belongs to. Monte Carlo simulation was used to compare the accuracy of respondent classification between HDD and GDD. In the Monte Carlo simulation study, the pattern match ratio and average attribute match ratio were used as criteria to evaluate the classification accuracy of GDD and HDD. Five attribute hierarchical structures in attribute hierarchical model(AHM) of Leighton et al.(2004) and Tatsuoka(1995, 2009) with 6 attributes were simulated. Under each type of Q-matrix, we set the slip at four levels(2%, 5%, 10%, 15%) to simulate ORPs of examinees(N=1000). The results of this study demonstrate that HDD is superior, especially under the unstructured hierarchy and independent structure. Moreover, method B presented higher classification accuracy than method R. Further research on HDD's validity and performance in other situations is warranted.
出处 《心理学报》 CSSCI CSCD 北大核心 2015年第2期264-272,共9页 Acta Psychologica Sinica
基金 江西省研究生创新专项基金(YC2013-B024)资助
关键词 GDD Q矩阵 知识状态 海明距离 GDD Q-matrix knowledge states Hamming Distance
  • 相关文献

参考文献15

  • 1蔡艳,涂冬波,丁树良.五大认知诊断模型的诊断正确率比较及其影响因素:基于分布形态、属性数及样本容量的比较[J].心理学报,2013,45(11):1295-1304. 被引量:26
  • 2DiBello, L. V., & Stout, W. (2007), Guest editors' introduction and overview: IRT-based cognitive diagnostic models and related method. Journal of Educational Measurement, 44(4), 285-291.
  • 3Ding, "SI L., Yang, s. Q., & Wang, w. Y. (2010), The importance of reachability matrix in constructing cognitively diagnostic testing. Journal of Jiangxi Normal University (Natural Science), 34(5), 490-494.
  • 4丁树良,祝玉芳,林海菁,蔡艳.Tatsuoka Q矩阵理论的修正[J].心理学报,2009,41(2):175-181. 被引量:56
  • 5Junker, B. M., & Sijtsma, K. (2001), Cognitive assessmentmodels with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25(3), 258-272.
  • 6Leighton, J. P., & Gierl, M. (2007), Cognitive diagnostic assessment for education." Theory and Applications (pp. 242-274). Cambridge, UK: Cambridge University Press.
  • 7Gierl, M Hunka, _ Leighton, J.P., J., & S.M. (2004), The attribute hierarchy method for cognitive assessment: A variation on Tatsuoka's rule-space approach. Journal of Educational Measurement, 41(3), 205-237.
  • 8Hamming, R. W. (1950). Error detecting and error correcting codes. The Bell System Technical Journal, 29(2), 147-160.
  • 9孙佳楠,张淑梅,辛涛,包钰.基于Q矩阵和广义距离的认知诊断方法[J].心理学报,2011,43(9):1095-1102. 被引量:32
  • 10Tatsuoka, K. K. (1991). Boolean algebra applied to determination of universal set of knowledge states (Tech. Rep. RR-91- 44ONR). Princeton, N J: Education Testing Service.

二级参考文献123

  • 1戴海崎,张青华.规则空间模型在描述统计学习模式识别中的应用研究[J].心理科学,2004,27(4):949-951. 被引量:39
  • 2余嘉元.运用规则空间模型识别解题中的认知错误[J].心理学报,1995,27(2):196-203. 被引量:40
  • 3辛涛,焦丽亚.测量理论的新进展:规则空间模型[J].华东师范大学学报(教育科学版),2006,24(3):50-56. 被引量:21
  • 4Gierl, M. J. , Leighton, J. P. , &Hunka S. M. (2000). Exploring the logic of Tatsuoka's Rule - Space Model for test development and analysis. Educational Measurement: Issues and Practice, 19 , 34-44.
  • 5Kenneth,H.R.(2002).离散数学及其应用(袁崇义,屈婉玲,王捍贫,刘田译)(第4版).北京:北京机械工业出版社.
  • 6Leighton, J. P., Gierl, M. J., &Hunka, S. M. (2004). The attribute hierarchy method for cognitive assessment: a variation on Tatsuoka' s rule - space approach. Journal of Educational Measurement,41 (3), 205-237.
  • 7Tatsuoka, K. K. (1983). Rule space: an approach for dealing with misconceptions based on item response theory. Journal of Educational Measurement,20 (4), 345 - 354.
  • 8Tatsuoka, K. K. , &Tatsuoka, M. M. (1987). Bug Distribution and Statistical Pattern Classification. Psychometrika,52 (2), 193 - 206.
  • 9Tatsuoka, K. K. ( 1991 ). Boolean Algebra Applied to Determination of Universal Set of Knowledge States (Tech. Rep. RR -91 -44 - ONR). Princeton, N J: Education Testing Service.
  • 10Tatsuoka, K. K. (1995). Architecture of knowledge structure and cognitive diagnosis: a statistical pattern recognition and classification approach. In P. D. Nichols, S. F. Chipman &R. L. Brennan ( Eds. ), Cognitively Diagnostic Assessment (pp. 327-361). Hillsdale, NJ: Erlbaum.

共引文献135

同被引文献122

引证文献22

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部