期刊文献+

硅灰掺量对超硫酸盐水泥水化进程的影响 被引量:6

The Influence of Silica Fume Content for Super Sulfate Cement Hydration Process
下载PDF
导出
摘要 通过设计3%,5%,8%,10%4种不同的硅灰掺量配制超硫酸盐水泥( SSC)。对其胶砂试样的力学强度进行了跟踪测试,并测试了试样自拌合加水后100h内的水化温升,借助扫描电子显微镜和X射线衍射分析仪对试样水化产物进行分析,得出硅灰不同掺量下SSC的力学性能、水化温升及水化产物的差异。结果表明:硅灰在SSC中掺量为3%~5%比较适宜,对SSC的力学性能和水化进程有促进作用;试样的水化过程最大的放热峰发生30~60h,随着硅灰的掺入,试样的最大水化放热峰提前;SEM和XRD分析结果显示硅灰填充于SSC之间,使胶凝材料具有良好的级配和密实度,而且与SSC水化产物中少量的Ca( OH)2产生火山灰效应,提高了试样的强度。 Four different silica fume content (3%, 5%, 8% and 10% respectively) was researched for preparing super sulfate cement ( SSC for short) . The mechanical strength and hydration temperature rise of specimens were tested from mixing to 100h, and the component of hydration products were analyzed by scanning electron microscope and X-ray diffractometer. Then the content differences of silica fume to effect SSC hydration reaction were obtained. Experimental results show that the proper content of silica fume in SSC system is 3% ~5% which has a promoting effect on the mechanical properties and hydration process. The specimens hydration process maximum exothermic peak appear in 30~60h. The advanced exothermic peak occurred went with silica fume incorporation. SEM and XRD analysis showed that the silica fume filled in SSC particles, and cementitious materials with excellent gradation and compaction. Besides, the silica fume reacted with the small amount of Ca( OH) 2 in the SSC system to cause volcano ash effect, which enhanced the strength of specimens.
出处 《施工技术》 CAS 北大核心 2015年第3期89-92,共4页 Construction Technology
基金 中国建筑股份有限公司科技项目(CSCEC-2014-Z-34)
关键词 建筑材料 水泥 超硫酸盐水泥 硅灰 水化温升 活性指数 building materials cement super sulphated cement silica fume hydration temperature rise activity index
  • 相关文献

参考文献4

二级参考文献34

  • 1胡曙光,何永佳,王晓,吕林女,丁庆军.不同养护制度下混合水泥反应程度的研究[J].武汉科技学院学报,2005,18(12):33-36. 被引量:12
  • 2王云红,徐杰.火电厂粉煤灰微珠的分选利用[J].粉煤灰,2006,18(3):36-38. 被引量:4
  • 3S.N.Vanikar,L.N.Triandafilou.Implementation of highperformance concrete bridge technology in the USA[A]//Seventh International Symposium on Utilization of High-sttength/Highperformance Concrete[C].Washdngton,2005,1(6).
  • 4M.Sehmidt,E.Fehling.Ultra-high-performance concrete research,development and application[A]//Seventh International Symposium on Utilization of High-strength/High-peformance Concrete[C].Waddngton,2005,1(6).
  • 5J.Moksne.HPC-a proven material with unfulfilled[A]//Seventh Intemational Symposium on Utilization of High-xtrength/Highperformance Concrete[C].Washington,2005,1(6).
  • 6H.Jinnai,S.Kuroiwa,S.Watanabe,et al.Development and construction record on high-strength concrete with the compressive strength exceeding 150MPa[A]//Seventh Intematienal Syraposium on Utilization of High-strength/High-performance Concrete[C].Washington,2005,1(6).
  • 7NQ.Feng,YX.Shi,TY.Hao.Influence of ultrafine powder on the fluidity and strength of cement paste[J].Advance in Cement Research,2000,12(3):89-95.
  • 8Jeffrey W Bullard, Hamlin M Jennings. Mechanisms of Cement Hydration[J]. Cem Conc Re,2010 (1):1-16.
  • 9Langan B W, Weng K, Ward M A. Effect of Silica Fume and Fly Ash on Heat of Hydration of Portland Cement[J]. Cem Cone Re,2002 (32) :1045-1051.
  • 10Ivindra Pane, Will Hansen. Investigation of Blended Cement Hydration by Isothermal Calorimetry and Thermal Analysis[J]. Cem Cone Re,2005(35):1155-1164.

共引文献109

同被引文献40

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部