摘要
利用矩阵的块对角占优和块广义严格对角占优的性质,给出了块严格α1-对角占优矩阵的等价表示,进而得到了块H-矩阵新的判定法则,即设A=(aij)∈Cn×n,M5=φ,若A满足‖Aii-1‖-1-Ri(A)/Ci(A)-Ri(A)+‖Ajj-1‖-1-Cj(A)/Rj(A)-Cj(A)≥1(i∈M1,j∈M2),则A为块H-矩阵。并应用于矩阵正稳定性的判定。
In this paper, based on the properties of block diagonal dominance and generalized strictly diagonal dominance matrices, the equivalent representations of block strictly al-diagonally dominant matrices are given. Furthermore, some criteria for block H-matrices are obtained, that is, let A=(aij)∈Cn×n,M5=φ,if A satisfies ‖Aii-1‖-1-Ri(A)/Ci(A)-Ri(A)+‖Ajj-1‖-1-Cj(A)/Rj(A)-Cj(A)≥1(i∈M1,j∈M2),then A is a block H-matrix. As their application, criteria for positive stability of matrices are given.
出处
《重庆师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2015年第2期99-103,共5页
Journal of Chongqing Normal University:Natural Science
基金
内蒙古民族大学科学研究基金(No.NMD1226)
内蒙古自治区高等学校科学研究项目(No.NJZY13175)
关键词
块α-对角占优矩阵
块H-矩阵
正稳定矩阵
M-矩阵
block a-diagonally dominant matrices
block H-matrices
positive stable matrix
M-matrices