期刊文献+

贵金属表面上磁性原子结构及其性质概述

Review of magnetic atomic structures and their properties on noble metal surfaces
原文传递
导出
摘要 有序排列的磁性纳米结构由于其丰富的物理性质和数据存储方面的潜在应用而受到广泛关注.随着现代生长和显微成像技术的进步,构造原子量级的结构和探测它们独特的性质已经成为可能.本文回顾了贵金属表面上的磁性金属原子有序结构的近期研究结果,其中包括一维原子弦、二维六角超晶格和量子尺寸效应诱导的新奇结构.结合低温扫描隧道显微镜、动力学蒙特卡洛模拟等实验和理论相结合的手段,对这些结构的形成条件进行了讨论,并通过扫描隧道谱和紧束缚近似计算对这些结构中的特殊电子态性质进行了研究.此外,纳米尺寸围栏中的量子受限效应对原子扩散和自组织行为有显著的影响,产生了量子诱导的自组织生长,并且可以利用尺寸变化的开口围栏实现原子级的定量原子捕获,从而抑制由生长导致的统计涨落. Ordered arrays of magnetic nanostructures have rich physical properties and potential applications, attracting much theoretical and experimental interest. These structures can now be fabricated and investigated at scales down to the atomic level. Herein, we review recent advances in the study of magnetic atomic structures on the surfaces of noble metals. These structures include one-dimensional strings, two-dimensional hexagonal superlatfices, and novel structures stabilized by quantum guiding. We focus on low-temperature scanning tunneling microscopy studies as well as kinetic Monte Carlo simulations and ab initio calculations, to discuss the self- assembly formation conditions. Combining the results of scanning tunneling spectroscopy and tight-binding calculations, we studied the spectra of these well-ordered structures. We also discuss how quantum confinement in nanocorrals significantly influences adatom diffusion and self-assembly, leading to quantum-guided self-assembly and self-regulated atom trapping in open nanocorrals.
出处 《科学通报》 EI CAS CSCD 北大核心 2015年第4期329-343,共15页 Chinese Science Bulletin
基金 国家重点基础研究发展计划(2010CB923401) 国家自然科学基金(10974087,11374145,11304150,11023002)资助
关键词 表面态 长程相互作用 自组织生长 量子受限效应 surface states, long-range interaction, self-assembly, quantum confinement
  • 相关文献

参考文献1

二级参考文献100

  • 1Bader S D and Parkin S S P 2010 Annu.Rev.Cond.Matter Phys.1 71.
  • 2Sun S,Murray C B,Weller D,Folks L and Moser A 2000 Science 287 1989.
  • 3Gambardella P,Dallmeyer A,Maiti K,Malagoli M C,Eberhardt W,Kern K and Carbone C 2002 Nature 416 301.
  • 4Gambardella P,Dallmeyer A,Maiti K,Malagoli M C,Rusponi S,Ohresser P,Eberhardt W,Carbone C and Kern K 2004 Phys.Rev.Lett.93 077203.
  • 5Fruchart O,Klaua M,Barthel J and Kirschner J 1999 Phys.Rev.Lett.83 2769.
  • 6Elmers H J,Hauschild J,H?che H,Gradmann U,Bethge H,Heuer D and K?hler U 1994 Phys.Rev.Lett.73 898.
  • 7Shen J,Skomski R,Klaua M,Jenniches H,Manoharan S S and Kirschner J 1997 Phys.Rev.B 56 2340.
  • 8Knorr N,Brune H,Epple M,Hirstein A,Schneider M A and Kern K 2002 Phys.Rev.B 65 115420.
  • 9Silly F,Pivetta M,Ternes M,Patthey F,Pelz J P and Schneider W D 2004 Phys.Rev.Lett.92 016101.
  • 10Silly F,Pivetta M,Ternes M,Patthey F,Pelz J P and Schneider W D 2004 New J.Phys.6 16.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部