期刊文献+

移动大数据时代:无线网络的挑战与机遇 被引量:34

Opportunities and challenges of wireless networks in the era of mobile big data
原文传递
导出
摘要 随着移动互联网、云计算、物联网、机器类型通信等新兴信息通信技术的飞速发展,信息社会进入了网络化的大数据时代.快速普及的智能化移动终端应用助推了全球移动数据流量的大幅度增长.在移动大数据时代,海量数据、业务类型演进、数据多样化、数据空-时域分布不均匀等特征给无线网络带来了严峻的挑战.为了应对挑战,一方面,无线网络从新频谱拓展、传输技术、智能立体化组网等多维度进行演进以满足大数据传输与应用的需求;另一方面,移动大数据作为一种新的生产要素改变着人们认知网络的方法,无线网络可以充分借鉴互联网数据挖掘的理论与方法,实现网络的灵活部署、无线资源的优化配置和低能耗绿色通信. With the rapid development of information and communication technologies such as mobile Internet, cloud computing, and the Internet of Things, the information society has stepped into the networked big data era. Smart terminals, widely applied in everyday life, are driving the explosive demands of wireless data services. In the era of mobile big data, wireless networks face with many challenges owing to the specific characteristics of big data such as high volume, variety, and non-uniform distribution in the time and space domains. And new approaches are required to address these new challenges. On the one hand, new spectrum technology, transmission technology, and intelligent networking offer promising evolution directions. On the other hand, mining the information contained in the low-density mobile big data, could be a new way to optimize current wireless networks. Data mining theory incorporated with mobile Internet can be applied in a wireless network to realize flexible networking, optimization of radio resource configuration, and green communication.
机构地区 北京邮电大学
出处 《科学通报》 EI CAS CSCD 北大核心 2015年第5期433-438,共6页 Chinese Science Bulletin
基金 国家自然科学基金(61471058 61421061) 北京高等学校青年英才计划(YETP0429)资助
关键词 移动大数据 无线网络 挑战与机遇 网络部署 资源管控预测 mobile big data, wireless networks, opportunities and challenges, network deployment, resource allocation forecast
  • 相关文献

参考文献9

二级参考文献100

  • 1王鑫,王洪国,张建喜,胡宝芳.聚类分析方法及工具应用研究[J].计算机科学,2006,33(2):197-200. 被引量:19
  • 2姜传贤,孙星明,易叶青,杨恒伏.基于JADE算法的数据库公开水印算法的研究[J].系统仿真学报,2006,18(7):1781-1784. 被引量:9
  • 3OASIS. Unstructured Information Management Architecture (UIMA). Version 1.0, Working Draft 05, May 2008.
  • 4Oomoto E, Tanaka K. OVID: Design and implementation of a video object database system. IEEE Trans Knowl Data Eng, 1993,5: 629-643.
  • 5Wu J K, Narasimhalu A D, Mehtre B M, et al. CORE: a content-based retrieval engine for multimedia information systems. Multimed Syst, 1995, 3:25-41.
  • 6Aslandogan Y A. Their C Yu C T, et al. Design, implementation and evaluation of SCORE (a system for content based retrieval of pictures). In: Proceedings of the Eleventh International Conference on Data Engineering (IDCE), Taipei, 1995. 280-287.
  • 7Gruber T. Towards principles for the design of ontologies used for knowledge sharing. Technical Report, KSL-93-04, Knowledge Systems Laboratory, Stanford University, 1993.
  • 8Chaudhry W R, Meziane F. Information extraction from heterogeneous sources using domain ontologies. In: Proc of IEEE International Conference on Emerging Technologies, Islamnabad, Pakistan, 2005. 511 516.
  • 9Town C P. Ontology based visual information processing. PhD Thesis, Cambridge: University of Cambridge, 2004.
  • 10Flickner M, Sawhney H, Niblack W, et al. Query by image and video content: The QBIC system. IEEE Comput, 1995, 28:23-32.

共引文献2678

同被引文献224

引证文献34

二级引证文献235

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部