摘要
Background: Liver transplantation has become the treatment of choice for patients with end-stage acute or chronic hepatic disease. Bile duct complications are common events after liver transplantation. The aim of this study was to evaluate the blood supply of the human bile duct and identify the underlying mechanisms of bile duct complications after liver transplantation. Methods: The duct supply branches from gastroduodenal artery and blood supply of extrahepatic bile duct system were re-evaluated through selective hepatic angiography from 600 patients. In addition, 33 cadavers were injected with latex casting material into the common hepatic artery, then the extrahepatic bile duct and the branches from the common hepatic artery were carefully dissected to visualize the gastroduodenal artery and its branching to the extrahepatic bile duct. Results: The bile duct artery arose from the branch of the gastroduodenal artery in 8.1% (49/600). Of these 49 individuals, the bile duct artery was supplied by the gastroduodenal artery (61.22%, 30/49), the proper hepatic artery (14.29%, 7/49), or both the gastroduodenal artery and the proper hepatic artery (24.49%, 12/49). In our study of 33 cadavers, the percentage that the bile duct artery arose from the gastroduodenal artery was 27.27%. The blood supply to the bile extrahepatic bile ducts was divided into different segments and formed longitudinal and arterial network anastomosed on the walls of the duct. Conclusions: There is a close relationship between the duct supply branches from gastroduodenal artery and the blood supplying patterns of the extrahepatic bile duct system. In liver transplant surgery, the initial part of the gastroduodenal artery is preferred to be preserved in the donor liver. It is of great significance to improve the success rate of operation and reduce complications.
Background: Liver transplantation has become the treatment of choice for patients with end-stage acute or chronic hepatic disease. Bile duct complications are common events after liver transplantation. The aim of this study was to evaluate the blood supply of the human bile duct and identify the underlying mechanisms of bile duct complications after liver transplantation. Methods: The duct supply branches from gastroduodenal artery and blood supply of extrahepatic bile duct system were re-evaluated through selective hepatic angiography from 600 patients. In addition, 33 cadavers were injected with latex casting material into the common hepatic artery, then the extrahepatic bile duct and the branches from the common hepatic artery were carefully dissected to visualize the gastroduodenal artery and its branching to the extrahepatic bile duct. Results: The bile duct artery arose from the branch of the gastroduodenal artery in 8.1% (49/600). Of these 49 individuals, the bile duct artery was supplied by the gastroduodenal artery (61.22%, 30/49), the proper hepatic artery (14.29%, 7/49), or both the gastroduodenal artery and the proper hepatic artery (24.49%, 12/49). In our study of 33 cadavers, the percentage that the bile duct artery arose from the gastroduodenal artery was 27.27%. The blood supply to the bile extrahepatic bile ducts was divided into different segments and formed longitudinal and arterial network anastomosed on the walls of the duct. Conclusions: There is a close relationship between the duct supply branches from gastroduodenal artery and the blood supplying patterns of the extrahepatic bile duct system. In liver transplant surgery, the initial part of the gastroduodenal artery is preferred to be preserved in the donor liver. It is of great significance to improve the success rate of operation and reduce complications.