期刊文献+

几个级数-乘积型恒等式与Dedekind Eta函数展开式 被引量:1

Some Series-Product Identities and Expansions on Dedekind's Eta Function
下载PDF
导出
摘要 利用级数的重排与Jacobi三重积恒等式,得到三个级数-乘积型恒等式.作为它们的特殊情形,得到几个与Dedekind eta函数相关的展开式. We establish three series-product identities.Our tools are the Jacobi triple product identity and the method of series rearrangement.Several identities on Dedekind's eta functionη(τ) are obtained.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2015年第1期110-117,共8页 Acta Mathematica Scientia
基金 国家自然科学基金(11371184)资助
关键词 三重积恒等式 级数重排 级数-乘积型恒等式 Dedekind's eta函数 模恒等式 Triple product identity Series rearrangement Series-product identity Dedekind's eta function Modular identity
  • 相关文献

参考文献11

  • 1Kongsiriwong S, Liu Z G. Uniform proofs of q-series-product identities. Results Math, 2003, 44(3/4) 312 339.
  • 2Zhu J M. A sextuple product identity with applications. Mathematical Problems in Engineering, Voi 2011 Article ID 462507, 11 pages.
  • 3Rogers L J. Second memoir on the expansion of certain infinite products. Proc London Math Soc, 1894 25:318-343.
  • 4Hecke E. Mathematische Werke. G6tingen: Vandenhoeck & Ruprecht, 1959.
  • 5Andrews G E. Hecke modular forms and the KAC-Peterson identities. Trans Amer Math Soc, 1984 283(2): 451-458.
  • 6Andrews G E. The fifth and seventh order mock theta functions. Trans Amer Math Soc, 1986, 293(1) 113-134.
  • 7Kac V G, Peterson D H. Affine Lie algebras and Hecke modular forms. Bull AmerMath Soc (N S), 1980 3(3): 1057-1061.
  • 8Liu Z G. An expansion formula for q-series and applications. Ramanujan J, 2002, 6(4): 429-447.
  • 9Ewell J A. Completion of a Gaussian derivation. Proc Amer Math Soc, 1982, 84(2): 311-314.
  • 10Shen L C. On the products of three theta functions. Ramanujan J, 1999, 3(4): 343-357.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部