期刊文献+

一类具有局部记忆阻尼的弱耦合系统的能量衰减估计 被引量:4

Energy Decay Estimates for the Weakly Coupled Systems with Local Memory Damping
下载PDF
导出
摘要 研究具有局部记忆阻尼弱耦合梁-弦系统.首先在合适的假设条件下,应用线性算子半群理论证明了系统的适定性;进而运用线性算子半群的频域定理证明了具有局部记忆阻尼弱耦合梁-弦系统的能量是一致指数衰减的. This paper studies the weakly coupled beam-string systems with local memory damping.First,under the appropriate hypothesis,we proved that the well-posedness of the system by using the theory of linear operator semigroup.And then,we show that the energy of the weakly coupled beam-string system with local memory damping is uniform exponential decay by applying the frequence domain result on Hilbert space.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2015年第1期194-209,共16页 Acta Mathematica Scientia
基金 国家自然科学基金(61374096 11271104)资助
关键词 耦合梁-弦系统 线性算子半群 局部记忆阻尼 一致指数衰减 Coupled beam-string system Linear operator semigroup Local memory damping Uniform exponential decay
  • 相关文献

参考文献3

二级参考文献27

  • 1Timoshenko S. Vibration Problems in Engineering. New York: Van Nostran Reinhold, 1955.
  • 2Morgfil O. Boundary control of a Timoshenko beam attached to a rigid body: planar motion. Int J Control, 1991, 54:763-791.
  • 3Lagnese J E, Lions J L. Modelling Analysis and Control of Thin Plates. Pairs: Masson, 1989.
  • 4Kim J U, Renardy Y. Boundary control of the Timoshenko beam. SIMA J Control Optim, 1987, 25: 1417-1429.
  • 5Liu Z Y, Peng C. Exponential stability of a viscoelastic Timoshenko beam. Adv Math Sci Appl, 1998, 8: 343-351.
  • 6Soufyane A. Stabilisation de la poutre de Timoshenko. JC R Acd Sci Paris (Ser I), 1999, 328:731-734.
  • 7Mufioz Rivera J E, Ferngndez Sare H D. Stability of Timoshenko systems with past history. J Math Anal Appl, 2008, 339:482-502.
  • 8Chen G, Fulling S A, Narcowich F J, Sun S. Exponential decay of energy of evolution equations with locally distributed damping. SIMA J Appl Math, 1991, 51:266-301.
  • 9Liu K S. Locally distributed control and damping for the conservative system. SIMA J Control Optim, 1997, 35:1574-1590.
  • 10Zuazua E. Exponential decay for the semilinear wave equation with localized damping. Comm Part Diff Eq, 1990, 15:205-235.

共引文献5

同被引文献14

  • 1Han Xiaosen, Wang Mingxin. Energy decay rate for a coupled hyperbolic system with nonlinear damping[J]. Nonlinear Anal, 2009, 70: 3264-3272.
  • 2Aissa G, Salim A. Messaoudi. General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping[J]. Math Meth Appl Sci, 2009, 32: 2102-2122.
  • 3Han Xiaosen, Wang Mingxin. General decay of energy for a viscoelastic equation with nonlinear damping[J]. Math Meth Appl Sci, 2009, 32: 346-358.
  • 4Liu Kangsheng, Liu Zhuangyi. On the type of C0-semigroup associated with the abstract linear viscoelastic system[J]. Z Angew Math Phys, 1996, 47(2): 1-15.
  • 5Liu Kangsheng, Liu Zhuangyi. Exponential decay of energy of vibrating strings with local viscoelasticity[J]. Z Angew Math Phys, 2002, 53(2): 265-280.
  • 6Liu Kangsheng, Liu Zhuangyi. Boundary stabilization of a nonhomogeneous beam with rotatory inertia at the tip[J]. J Comput Appl Math, 2000, 114: 1-10.
  • 7Pazy A. Semigroups of Linear Operators and Applications to Partical Differential Euqa- tions[M]. New York: Springer-Verlag, 1983, 21(1): 56-78.
  • 8Huang Falun. Characteristic condition for exponential stability of linear dynamical systems in Hilbert spaces[J]. Ann Diff Eqs, 1985, 1(1): 43-56.
  • 9Pruss J. On the spectrum of semigroups [J]. Trans Amer Math Soc, 1984, 284 (3): 847-857.
  • 10Adams R A. Sobolev Spaces[M]. New York: Acadamic Press, 1975.

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部