期刊文献+

面向数据规模可扩展的并行优化K-means算法

Parallel Optimization K-means Algorithm Facing the Data Size Scalable
下载PDF
导出
摘要 传统的K-means算法迭代过程中需要加载全部的聚类样本数据,并且更新类中心过程是非并行的。针对传统Kmeans算法处理数据规模小和类中心更新慢的问题,提出一种改进的K-means算法,面向解决K-means单台机器处理数据规模扩展问题,和处理器利用率低效问题。实验验证,该方法能够高效地处理大规模数据聚类。 Traditional K-means algorithm need to load all the sample data into memory, and updating the class center is a non-parallel process. For the problem of the number of processing data is small and updating class centers with low speed in traditional K-means algorithm, proposes an improved K-means algorithm to solve the problems of processing data scale expansion and the processor utilization inefficient. Experiment shows the method can efficiently deal with large-scale data clustering.
作者 李尧坤
出处 《现代计算机(中旬刊)》 2015年第1期3-5,共3页 Modern Computer
关键词 K—means 大规模 更新类中心 并行 K-means Large-Scale, Updating Class Centers Parallel
  • 相关文献

参考文献2

二级参考文献22

  • 1Ekanayake J,Pallickara S.MapReduce for data in-tensive scientific analysis. IEEE eScience . 2008
  • 2Zhou Ping,Lei Jingsheng,Ye Wenjun.Large-scaledata sets clustering based on MapReduce and hadoop. Journal of Computational Information Systems . 2011
  • 3Hadoop:Open source implementation of MapReduce. http:∥hadoop.apache.org . 2010
  • 4Wang Xuan.Clustering in the cloud:clustering algo-rithms to Hadoop Map/Reduce framework. . 2010
  • 5DEAN J,GHEMAWAT S.MapReduce:simplified data processing on large clusters. . 2004
  • 6Ekanayake J,Pallickara S.MapReduce for data in-tensive scientific analysis. IEEE eScience . 2008
  • 7Zhou Ping,Lei Jingsheng,Ye Wenjun.Large-scaledata sets clustering based on MapReduce and hadoop. Journal of Computational Information Systems . 2011
  • 8Hadoop:Open source implementation of MapReduce. http:∥hadoop.apache.org . 2010
  • 9Wang Xuan.Clustering in the cloud:clustering algo-rithms to Hadoop Map/Reduce framework. . 2010
  • 10DEAN J,GHEMAWAT S.MapReduce:simplified data processing on large clusters. . 2004

共引文献337

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部