期刊文献+

β_2糖蛋白1多肽抗体的制备与应用 被引量:3

Preparation and application of a polyclonal antibody against the peptides of β_2 glycoprotein 1
下载PDF
导出
摘要 目的 利用人工合成β2糖蛋白1(β2GP1)多肽制备针对人源、鼠源β2GP1的多克隆抗体, 并鉴定抗体的特异性及致病性。方法 应用Fmoc法化学合成β2GP1 N端第35~51位氨基酸的多肽, 将合成后的多肽与钥孔血蓝蛋白(KLH)偶联, 免疫新西兰大白兔制备抗血清, 蛋白G纯化得到抗β2GP1多肽抗体, 利用ELISA和Western blot法鉴定其效价和特异性。体外实验使用抗β2GP1多肽抗体/β2GP1复合物刺激C3H/HeN小鼠腹腔巨噬细胞一定时间, 收集细胞总RNA和总蛋白, 实时定量PCR、Western blot法分别检测细胞组织因子(TF)mRNA和蛋白表达; Western blot法检测细胞p38、磷酸化p38、核因子κB p65(NF-κB p65)及磷酸化NF-κB p65表达情况; 体内实验采用C3H/HeN小鼠腹腔注射抗β2GP1多肽抗体建立实验性抗磷脂综合征(EAPS)模型, 检测小鼠外周血抗β2GP1抗体滴度及部分凝血活酶时间(APTT)。结果 化学合成β2GP1多肽的纯度为94%, 达到免疫用抗原标准。偶联KLH后免疫新西兰大白兔, 其抗血清效价大于1∶32 000。Western blot结果显示抗β2GP1多肽抗体可特异性识别人源和鼠源β2GP1条带, 双抗夹心ELISA检测表明该多肽抗体可与β2GP1隐蔽表位特异性结合。体外实验显示抗β2GP1多肽抗体/β2GP1复合物能够增强小鼠腹腔巨噬细胞p38、 NF-κB p65磷酸化, 诱导细胞TF mRNA及蛋白表达。体内实验成功建立EAPS小鼠模型, 小鼠外周血抗β2GP1抗体滴度大于1∶3200, APTT明显缩短。结论 所制备的抗β2GP1多肽抗体可识别人源和鼠源β2GP1分子, 能与β2GP1隐蔽抗原特异性结合且具有致病效应。 Objective To prepare a polyclonal antibody against human and murine β2 glycoprotein 1 (β2GP1) antigen with chemically synthesized β2GP1 peptides, and identify its specificity and pathogenicity. Methods The peptides from the NH2-terminal 35th-51th amino acids of β2GP1 were synthesized by standard Fmoc assay, and then used to immunize New Zealand white rabbits after coupling with keyhole limpet hemocyanin (KLH). The polyclonal antibody in the rabbit sera was purified by protein G column. The titer and specificity of the polyclonal antibody were determined by ELISA and Western blot analysis. The total RNA was extracted and the protein lysates were collected from C3H/HeN mouse peritoneal macrophages treated with the above anti-β2GP1 peptides antibody/β2GP1 complexes in vitro. And the tissue factor (TF) mRNA and protein expression in the peritoneal macrophages were detected by real-time quantitative PCR and Western blotting. The activation of p38 and NF-κB 1065 induced by anti-β2GP1 peptides antibody/β2GP1 complexes was determined by Western blotting using phosphor-specific antibodies. Experimental antiphospholipid antibody syndrome (EAPS) mouse model was established in C3H/HeN mice by intraperitoneal injection of anti-β2GP1 peptides antibody in vivo. The titers of anti-β2GP1antibodies in the mouse peripheral blood and the activated partial thromboplastin time (APTT) were detected. Results The purity of chemically synthesized β2GP1 peptides was 94%, which met the immunogen standard. The titer of antiserum of the rabbit immunized with β2GPI peptide coupling with KLH was over 1:32 000. Western blotting showed that the anti-β2GP1 peptides antibody could specifically recognize both human and mouse β2GP1. Furthermore, ELISA showed that the antibody could specifically bind to β2GP1 cryptic epitope. In vitro experiments demonstrated that the anti-β2GP1 peptides antibody/ β2GP1 complexes could enhance p38 and NF-KB p65 phosphorylation in mouse peritoneal macrophages and induce TF mRNA and protein expression. Moreover, EAPS mouse model induced by anti-β2GP1 peptide antibody was successfully established, in which the titers of anti-β2GP1 antibody in mouse peripheral blood were greater than 1:3200 and APTT was significantly shorter that that of control group. Conclusion The anti-β2GP1 peptide antibody we prepared could specifically recognize both human and mouse β2GP1 and specifically bind to β2GP1 cryptic epitope. It was also proved to have the pathogenic effect.
机构地区 江苏大学医学院
出处 《细胞与分子免疫学杂志》 CAS CSCD 北大核心 2015年第3期402-407,共6页 Chinese Journal of Cellular and Molecular Immunology
基金 国家自然科学基金(81370614) 江苏省普通高校研究生科研创新计划(CXZZ13_0702)
关键词 抗磷脂综合征 β2糖蛋白Ⅰ 多肽抗原 多克隆抗体 antiphospholipid syndrome β2 glycoprotein 1 polypeptide antigen polyclonal antibody
  • 相关文献

参考文献21

  • 1de Groot PG, MeijersJCM. beta2-glycoprotein I: evolution, structure and function[J].J Thromb Haemost, 2011, 9(7) : 1275 -1284.
  • 2Habe K, Wada H, Matsumoto T, et al. Presence of antiphospholipid antibody is a risk factor in thrombotic events in patients with antiphospholipid syndrome or relevant diseases[J]. IntJ Hematol, 2013,97(3) : 345 -350.
  • 3Wang T, Zhou H, Xie H, et al. Epigallocatechin-3-gallate inhibits TF and TNF-alpha expression induced by the anti-beta2GPVbeta2GPI complex in human THP-1 cells[J]. IntJ Mol Med, 2014, 33 (4) : 994 -1002.
  • 4Colasanti T, Alessandri C, Capozzi A, et al. Autoantibodies specific to a peptide of heta2-glycoprotein I cross-react with TLR4, inducing a proinflammatory pbenotype in endothelial cells and monocytes[J] . Blood, 2012,120(16): 3360 -3370.
  • 5Nishimura M, Nii T, Trimova G, et al. The NF -kappaB specific inhibitor DHMEQ preveots thrombus formation in a mouse model of antiphospholipid syndrome[J].J Nephropathol, 2013, 2 ( 2 ) : 114 -121.
  • 6BolesJ, Mackman N. Role of tissue factor in thrombosis in antipbospbolipid aotibody syndrome[J]. Lupus, 2010, 19 (4) : 370 - 378.
  • 7Willemze R, Bradford RL, Mooberry MJ, et al. Plasma microparticle tissue factor activity in patients with antiphospholipid antibodies with and without clinical complications[J]. Thromb Res, 2014 , 133(2): 187 -189.
  • 8Chighizola CB, Gerosa M, Meroni PL. New tests to detect antiphospholipid antibodies: anti-domain I beta-2-glycoprotein- I antibodies[1/0L]. Curr Rheumatol Rep, 2014, 16(2): 402.
  • 9Mondejar R, Gonzalez-Rodriguez C, Toyos-Saenz de Miera FJ, et al. Role of antiphospholipid score and anti-beta2-glycoprotein I domain I autoantibodies in the diagnosis of antiphospholipid syndrome[J] . Clin Chim Acta, 2014, 431: 174 -178.
  • 10MablerM, NormanGL, MeroniPL, etal. Autoantibodies to domain 1 of beta 2 glycoprotein 1: a promising candidate biomarker for risk management in antiphospholipid syndrome[J]. Autoimmun Rev, 2012,12(2): 313 -317.

二级参考文献10

  • 1Hamid C, Norgate K, D'Cruz DP, et al. Anti-beta2GPI-antibody-in- duced endothelial cell gene expression profiling reveals induction of no- vel pro-inflammatory genes potentially involved in primary antiphospho- hpid syndrome[J]. Ann Rheum Dis, 2007, 66(8) : 1000 -1007.
  • 2Sorice M, Longo A, Capozzi A, et al. Anti-beta2-glycoprotein I antibodies induce monocyte release of tumor necrosis factor alpha and tis- sue factor by signal transdnction pathways involving lipid rafts[ J]. Arthritis Rheum, 2007, 56(8): 2687-2697.
  • 3Zhou H, Yan Y, Xu G, et al. Toll-like receptor (TLR)-4 mediates anti-β2GP1/β2GPI-induced tissue factor expression in THP-1 ceils [J]. Clin Exp Immunol, 2011, 163(2): 189 -198.
  • 4Biswas SK, Lopez-Collazo E. Endotoxin tolerance: new mechanisms, molecules and clinical significance [ J ]. Trends Immunol, 2009, 30 (10) : 475 -487.
  • 5Takashima K, Matsunaga N, Yoshimatsu M, et al. Analysis of bind- ing site for the novel small-molecule TLR4 signal transduction inhibitor TAK-242 and its therapeutic effect on mouse sepsis model [ J ]. Br J of Pharmacol, 2009, 157:1250 - 1262.
  • 6MeGettriek AF, 0 'Neill LA. Loealisation and trafficking of Toll-like receptors : an important mode of regulation [ J ]. Curr Opin Immunol,2010, 22(1) : 20 -27.
  • 7Dunoyer-Geindre S, Kruithof EK, Galve-de Rochemonteix B, et al. Localization of beta2-glyeoprotein 1 in late endosomes of human endo- thelial cells[J]. Thromb Haemost, 2001, 85(5) : 903 -907.
  • 8Gharavi AE, Wilson W, Pierangeli S. The molecular basis of an- tiphospholipid syndrome[J]. Lupus, 2003, 12(8) :579 -583.
  • 9Rittirsch D, Flierl MA, Day DE, et al. Cross-talk between TLR4 and Fcgamma Receptor III( CD16 ) pathways [ J ]. PLoS Pathog, 2009, 5(6) : e1000464.
  • 10严一红,周红,周保成,文海平,许国莹,周芳.TLR4在anti-β2GPⅠ/β2GPⅠ复合物诱导THP-1细胞表达TF中的作用探讨[J].中国免疫学杂志,2010,26(5):396-401. 被引量:10

共引文献4

同被引文献34

  • 1涂艳阳,付建芳,徐如祥,王伯良,曹义战,仲月霞,付国强,田小溪.尖吻蝮蛇小分子多肽对人神经胶质瘤细胞系U251的凋亡及bcl-2/bax基因表达和氧化应激的影响[J].现代生物医学进展,2011,11(S2):5009-5012. 被引量:3
  • 2Dong W, Zhang X, Yang C, et al. Iridovirus infection in Chinesegiant salamanders, China, 2010 [ J ]. Emerg Infect Dis, 2011,17(12); 2388 -2389.
  • 3Jiang N, Fan Y, Zhou Y, et ai. Characterization of Chinese giantsalamander iridovirus tissue tropism and inflammatory response afterinfection[ J]. Dis Aquat Organ, 2015,114(3) : 229 -237.
  • 4Meng Y, Zhang H, Liang H W, et al. Development of a loop-mediatedisothermal amplification assay for rapid detection of iridovirus inChinese giant salamander [ J ]. J Virol Methods, 2013, 194 ;211 -216.
  • 5Yan X, Yu Z, 2iang P, et al. Tlie cq)sid proteins of a large,icosahedraldsDNA virus[J] . J Mol Biol, 2009,385 : 1287 - 1299.
  • 6Yan Y, Guo C,Ni S, et al. Singapore grouper iridovirus ( SGIV)encoded SGIV-miR-13 attenuates viral infection via modulating majorcapsid protein expression[ J]. Virus Res, 2015,205 : 45 -53.
  • 7Li W, Zhang X, Weng S, et al. Virion-associated viral proteins of aChinese giant salamander ( Andrias davidianus) iridovirus (genusRanavirus) and functional study of the major capsid protein ( MCP)[J]. Vet Microbiol, 2014,172(1/2) ; 129 -139.
  • 8Liu H I, Chiou P P,Gong H Y, et al. Cloning of the major capsidprotein (MCP) of Grouper Iridovirus of Taiwan (TGIV) and preliminaryevaluation of a recombinant MCP vaccine against TGIV [ J]. Int J MolSci, 2015, 16(2) : 28647 -28656.
  • 9Zhou Y,Fan Y,LaPatra S E,et al. Protective immunity of a Pichiapastoris expressed recombinant iridovirus major capsid protein in theChinese giant salamander, Andrias davidianus[ J]. Vaccine, 2015 f33(42) : 5662-5669.
  • 10Km Y R, Ruk S B, Fagutao F F, et al. DeveJcpmt d an inminochinidjo^^assay kit for rapid detection of ranavirusf J]. J Virol Methods, 2015,223: 33 -39.

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部