期刊文献+

基于叶片图像多特征融合的观叶植物种类识别 被引量:49

Method of identification of foliage from plants based on extraction of multiple features of leaf images
下载PDF
导出
摘要 叶片图像特征提取对于植物自动分类识别有着重要的研究意义。本文以观叶植物叶片为研究对象,综合提取叶片图像的颜色、形状和纹理特征,基于支持向量机(SVM)原理提出了基于图像分析的观叶植物自动识别分类方法。通过对50种观叶植物样本图像进行训练和识别,与BP神经网络和KNN识别方法进行比较,本文所采用的SVM分类器的识别率能够达到91.41%,取得了较好的识别效果。 The extraction of features of images of plant leaves is important for automatic classification and identification of plants. In this study, plant leaves were used as research objects. Through synthetic extraction of color, shape and texture features of leaf images, a method for automatical classification and identification of plants is proposed based on image analysis of a SVM ( support vector machine) principle. After training and recognizing images of fifty parts of foliage of plants, our classifier has achieved good performance with a recognition rate of 91.41% ,compared with the results of the BP (Back Propagation) neural network and the KNN (K-Nearest Neighbor) identification method.
出处 《北京林业大学学报》 CAS CSCD 北大核心 2015年第1期55-61,共7页 Journal of Beijing Forestry University
基金 中央高校基本科研业务费专项(RW2011--29)
关键词 观叶植物 叶片图像 特征提取 识别 支持向量机 plant foliage leaf image feature extraction identification SVM
  • 相关文献

参考文献9

  • 1王晓峰,黄德双,杜吉祥,张国军.叶片图像特征提取与识别技术的研究[J].计算机工程与应用,2006,42(3):190-193. 被引量:114
  • 2张宁,刘文萍.基于克隆选择算法和K近邻的植物叶片识别方法[J].计算机应用,2013,33(7):2009-2013. 被引量:25
  • 3丁娇,梁栋,阎庆.基于D-LLE算法的多特征植物叶片图像识别方法[J/OL].[2013-12-11].http://www.cnki.net/kcms/detail/11.2127.TP.20130924.0943.013.html.
  • 4INGROUILLEM J, LAIRDS M. A quantitative approach to oak variability in some north London woodlands [ J ]. The London Naturalist, 1986, 65: 35-46.
  • 5SIXTAT. Image and video-based recognition of natural objects [ D]. Prague: Czech Technical University, 2011.
  • 6ROSSATTOD R, CASANOVAD, KOLBR M, et al. Fractal analysis of leaf-texture properties as a tool for taxonomic and identification purposes: a case study with species from Neotropical Melastomataceae (Mi-conieae tribe) [ J]. Plant Systematics and Evolution, 2011, 291 ( 1 ) : 103-116.
  • 7MALLAH C,COPE J, ORWELL J. Plant leaf classification using probabilistic integration of shape, texture and margin features [ J/ OL]. [ 2014-01-06 ]. http://www, actapress, com/Abstract, aspx? paperId = 455022.
  • 8张娟,黄心渊.基于图像分析的梅花品种识别研究[J].北京林业大学学报,2012,34(1):96-104. 被引量:7
  • 9PELEGS, NAOR J, HARTLEY R, et al. Multiple resolution texture analysis and classification [ J ]. Pattern Analysis and Machine Intelligence, 1986,6(4) :518-523.

二级参考文献44

  • 1Milan Sonka,Vaclav Hlavac,Roger Boyle.Image Processing,Analysis and Machine Vision[M],Second Edition,Beijing:Posts & Telecom Press, 2002.
  • 2T W Ridler,S Calvard.Picture Thresholding Using An herative Selection Method[J].IEEE Transaction on System,Man and Cybernetics, 1978;8(8) :630-632.
  • 3H Freeman.On the encoding of arbitrary geometric configuratinns[J]. IRE Trans on Electronic Computers,1961;EC-10:260-268.
  • 4M K Hu.Visual Pattern Recognition by Moment Invariants[J].IRE Transaction Information Theory, 1962; 8 (2) : 179- 187.
  • 5Chaur-Chin Chen.Improved Moment Invariants for Shape Discfimi, nation[J].Pattem Recognition, 1993 ;26(5 ) :683-686.
  • 6D S Huang.The local minima free condition of feedforward neural networks for outer-supervised learning[J].IEEE Transaction on Systems, Man and Cybernetics, 1993 ; 28B (3) :477-480.
  • 7SAITOH T, AOKI K, KANEKO T. Automatic recognition of blooming flowers[J]. Pattern Recognition, 2004,1:27-30.
  • 8NILSBACK M E, ZISSERMAN A. Delving deeper into the whorl of flower segmentation[ J]. Image and Vision Computing, 2010, 28(6) :1049-1062.
  • 9NILSBACK M E, ZISSERMAN A. A visual vocabulary for flower classification[ C/OL ] //Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington : IEEE Computer Society, 2006 : 1447-1454. [ 2011- 03-01 ]. http: //www, robots, ox. ac. uk/- men/papers/nilsback_ cvpr06, pdf.
  • 10HSU T H, LEE C H, CHEN L H. An interactive flower image recognition system [ J ]. Multimedia Tools and Applications,2010, 53(1) :53-73.

共引文献137

同被引文献481

引证文献49

二级引证文献423

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部