期刊文献+

基于中性集对北川羌族自治县新城人工建设用地的识别 被引量:1

Analysis of built- up land detection in new Beichuan County based on neutrosophic set
下载PDF
导出
摘要 人工建设用地(包括建筑物、道路、广场等社会服务设施)的识别一直是用来监测地区发展速度的一个有效途径。针对目前在人工建设用地识别领域中对在建建筑物的忽视问题,利用中性集、均值漂移以及绿度因子等概念将在建建设用地信息进行增强,进而将其成功识别出来。实验证明,该方法对高分辨率遥感影像的人工建设用地识别是可行的。通过分析2009—2013年期间北川新城的建设工地面积及分布的变化情况可以看出,北川新城在2010—2013年期间完工面积占2009—2010年新建工程总面积的98.17%,在北川新城拓展区又新建0.6 km2的工程,施工迅速,为受灾居民提供了良好的居住和生活保障。 The detection of built-up land, including buildings, roads, squares and other social service facilities, has been an effective method in monitoring developing speed of a specific area. The purpose of this paper is to find the methods suitable for monitoring and comparing the progress of constructing new Beichuan on the basis of high spatial resolution aerial images. Aimed at solving the problem of neglecting buildings under construction in built-up area detection, the method put forward by the authors successfully extracted constructions in process by synthesizing neutrosophic set, mean shift and green factor. Experiments show that the method is effective in detecting built-up areas from remote sensed images with high spatial resolution. An analysis of change detection of built-up area from the year 2009 to 2013 indicates that new Beichuan has accomplished 98 . 17% of the project area where the construction was started from 2009 to 2010. Moreover, from the year 2010 to 2013, new Beichuan started several projects which occupied an area of 0. 6 km2 . High developing rate makes it possible for new Beichuan to be able to guarantee the living environment for victims of the earthquake.
出处 《国土资源遥感》 CSCD 北大核心 2015年第1期106-112,共7页 Remote Sensing for Land & Resources
基金 国家重点基础研究发展规划项目(编号:2013CB733405,2010CB950603) 公益性行业(气象)科研专项经费(编号:GYHY201006042) 国家自然科学基金项目(编号:41201345) 高分辨率对地观测系统重大专项(编号:E0307/1112)共同资助
关键词 人工建设用地 北川新城 中性集 均值漂移 高分辨率 built-up area new Beichuan neutrosphic set mean shift high spatial resolution
  • 相关文献

参考文献28

  • 1四川省绵阳市北川羌族自治县.北川山东工业园区规划[M].北川:[s.n.],2008.
  • 2四川省绵阳市北川羌族自治县.北川羌族自治县新县城城市总体规划(2008-2020)[M].北川:[s.n.],2008.
  • 3Carreira P, Resendes S, Santos A C. Towards automatic conflict de- tection in home and building automation systems [ J ]. Pervasive and Mobile Computing,2014,12:37 - 57.
  • 4Sumer E ,Turker M. An adaptive fuzzy - genetic algorithm approach for building detection using high -resolution satellite images[ J]. Computers, Environment and Urban Systems,2013,39:48 - 62.
  • 5Tong X H, Lin X F, Feng T T, et al. Use of shadows for detection of earthquake - induced coUapsed buildings in high - resolution satel- lite imagery [ J ]. ISPRS Journal of Photogrammetry and Remote Sensing,2013,79:53 - 67.
  • 6Xiao J, Gerke M, Vosselman G. Building extraction from oblique airborne imagery based on robust facade detection[ J] .ISPRS Jour- nal of Photogrammetry and Remote Sensing,2012,68:56 -68.
  • 7Kang C C, Wang W J, Kang C H. Image segmentation with compli- cated background by using seeded region growing[J]. AEU - In- ternational Journal of Electronics and Communications, 2012,66 (9) :767 -771.
  • 8Lopez - Molina C, De Baets B, Bustince H, et al. Multiscale edge detection based on Gaussian smoothing and edge tracking [ J ]. Knowledge - Based Systems, 2013,44:101 - 111.
  • 9Shih F Y, Cheng S X. Automatic seeded region growing for color image segmentation [ J ]. Image and Vision Computing, 2005,23 (10) :877 -886.
  • 10Zareizadeh Z, Hasanzadeh R P R, Baghersalimi G. A recursive col- or image edge detection method using Green' s function approach [ J]. Optik - International Journal for Light and Electron Optics, 2013,124(21 ) :4847 -4854.

二级参考文献24

共引文献79

同被引文献7

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部