期刊文献+

三维空间中次线性Schrodinger-Kirchhoff型方程的无穷多个负能量解(英文)

Infinitely Many Negative Energy Solutions for Sublinear Schrodinger-Kirchhoff-Type Equations in R^(3)
下载PDF
导出
摘要 Kirchhoff型方程模型来源于经典的达朗贝尔波动方程,该模型主要用于讨论可伸缩绳横向振动的长度变化,因而对该类模型进行研究具有重要的理论和实际意义.利用变分喷泉定理讨论了一类次线性Schrdinger-Kirchhoff型方程无穷多个负能量解的存在性,推广和改进了已有结果. The paper deals with a class of sublinear Schrdinger-Kirchhoff-type equations. The SchrdingerKirchhoff-type problem originates from the classical D' Alembert 's wave equations for free vibration of elastic strings. Particularly,this model takes into account the changes in length of the string produced by transverse vibrations. This makes the study of such a class of problems more interesting. Under appropriate assumptions on the potential and the nonlinear term,we prove the existence of infinitely many negative-energy solutions for these equations by using the variant fountain theorem established by Zou.
出处 《四川师范大学学报(自然科学版)》 CAS 北大核心 2015年第1期46-51,共6页 Journal of Sichuan Normal University(Natural Science)
基金 supported by The National Natural Science Foundation of China(11271372) Hunan Provincial Natural Science Foundation of China(12JJ2004)
关键词 Schrodinger-Kirchhoff型方程 次线性 喷泉定理 变分方法 Schrodinger-Kirchhoff-type equations sublinear variant fountain theorem variational approaches
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部