期刊文献+

一类非线性分数阶微分方程边值问题正解的存在唯一性 被引量:7

Unique Positive Solution for a Class of Nonlinear Fractional Differential Equation Boundary Value Problem
下载PDF
导出
摘要 运用和算子的不动点定理,研究了一类非线性分数阶微分方程边值问题正解的存在唯一性.结果不仅保证了正解的存在唯一性,而且能够构造一个迭代序列逼近它.最后,给出了一个例子说明所得结果的有效性. In this paper,the unique positive solution for a class of nonlinear fractional differential equation boundary value problem is concerned by a fixed point theorem of a sum operator. The main result can not only guarantee the existence and uniqueness of positive solution,but also be applied to construct an iterative scheme for approximating it. Finally,an example is given to illustrate the main result.
出处 《四川师范大学学报(自然科学版)》 CAS 北大核心 2015年第1期72-76,共5页 Journal of Sichuan Normal University(Natural Science)
基金 国家重点基础研究发展计划基金(2010CB732501) 高校新世纪优秀人才计划基金(NCET-10-0097) 四川省教育厅自然科学一般基金(14ZB0309)资助项目
关键词 分数阶微分方程 边值问题 正解 唯一性 和算子的不动点定理 fractional differential equation boundary value problem positive solution unique fixed point theorem of a sum operator
  • 相关文献

参考文献4

二级参考文献45

  • 1徐明瑜,谭文长.中间过程、临界现象——分数阶算子理论、方法、进展及其在现代力学中的应用[J].中国科学(G辑),2006,36(3):225-238. 被引量:34
  • 2PODLUBNY I.Fractional differential equations[M].San Diego,CA:Academic Press,1999:261-307.
  • 3DIETHELM K,FORD N J,FREED A D,et al.Algorithms for the fractional calculus:a selection ofnumerical methods[J].Comput Methods Appl MechEng,2005,194:743-773.
  • 4YUAN L,AGRAWAL O P.A numerical scheme fordynamic systems containing fractional derivatives[J].ASME J Vibr Acoust,2002,124:321-324.
  • 5DIETHELM K.An improvement of a nonclassicalnumerical method for the computation of fractionalderivatives[J].Numer Algor,2009,131(1):014502-4.
  • 6MIYAKODA T.Discretized fractional calculus with aseries of Chebyshev polynomial[J].Electronic NotesTheor Comput Sci,2009,225:239-244.
  • 7SUGIURA H,HASEGAWA T.Quadrature rule for Abel’sequations:uniformly approximating fractional derivatives[J].J Comput Appl Math,2009,223:459-468.
  • 8HASEGAWA T,SUGIURA H.Uniform approximation tofractional derivatives of functions of algebraic singularity[J].J Comput Appl Math,2009,228:247-253.
  • 9LI C P,CHEN A,YE J J.Numerical approaches tofractional calculus and fractional ordinary differentialequation[J].J Comput Phys,2011,230(9):3352-3368.
  • 10ZHENG Y Y,LI C P,ZHAO Z G.A note on the finiteelement method for the space-fractional advectiondiffusion equation[J].Comput Math Appl,2010,59(5):1718-1726.

共引文献7

同被引文献32

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部