期刊文献+

压力脉冲试验伺服控制系统机理分析与仿真试验 被引量:3

Mechanism analysis,simulation and experiment study of dynamic servo control system of periodic high pressure impact
下载PDF
导出
摘要 为实现压力脉冲试验中标准压力波形的精确动态跟踪控制,满足高压力高频率持续冲击的要求,建立该试验的液压伺服系统与测控平台.将飞机用作动筒和伺服阀等被试液压件处理为封闭容腔,利用油液压缩性进行建压,采用LabVIEW图形化编程技术完成了液压系统的可视化动态伺服控制.在建立伺服阀、被试容腔和蓄能器数学模型的基础上,结合数字PID控制算法,完成AMESim环境下的仿真,对比分析不同容腔容积和冲击频率对系统性能的影响,得到不同条件下系统流量和阀口开度等参数的理论值,仿真结果表明伺服阀需要有额定200L/min以上的通流能力.实际试验系统以压力等级50MPa,通流能力230L/min的大流量伺服阀为直接控制对象,试验高压达到50 MPa,并可无级调整,压力冲击波形周期2 Hz、区间5~42 MPa,试验曲线落在标准阴影区以内,试验结果符合预期指标,并验证了仿真分析的可靠性. The cylinder and servo-valve applied to airplane hydraulic systems should be subject to periodic trapezoid-shaped pressure impact test treated as a closed chamber. A hydraulic servo control system dynamically tracking the standard impact pressure curve was developed for the test. Mathematic models of the two stage servo-valve and the being tested chamber was established, and the simulation in AMESim was accomplished using the digital PID algorithm. The flow rate and valve open area under different chamber volume and different impact frequency was studied. Maximum flow rate of the servo valve in simulation is about 250 L/min under the condition of 5-42 MPa impact pressure, 6 L chamber volume and 2 Hz impact frequency. Experiment system could be visually real-time controlled based on the LabVIEW and data acquisition card using graphic coding technology. Actual pressure curve generated by the hydraulic servo control system precisely falls into the standard area. Experiment results tally with the simulation and the system reaches the design target.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2015年第2期275-281,共7页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(51005200)
关键词 压力脉冲试验 液压伺服控制 伺服阀 LABVIEW pressure impact test hydraulic servo control servo valvel LabVIEW
  • 相关文献

参考文献6

  • 1GJB3849-99.飞机液压作动筒、阀、压力容器脉冲试验要求和方法[s].北京:国防科学技术工业委员会,1999.
  • 2袁朝辉,马煜.基于PID神经网络的液压脉冲试验系统[J].液压与气动,2010,34(4):86-88. 被引量:5
  • 3王双,邓乾坤,张斌.高压伺服控制脉冲试验台液压系统设计[J].液压气动与密封,2012,32(9):21-24. 被引量:7
  • 4KAMESWARA RAO C V, ESWARAN K. Pressure transients in incompressible fluid pipeline networks [J]. Nuclear Engineering and Design, 1999, 188(1) : 1 - 11.
  • 5ABDUL J, GAUTHAM, REMYA S. A simplified Ge- netic Algorithm for online tuning of PID controller in LabVIEW[C]//2009 World Congress on Nature & Bio- logically Inspired Computing. Coimbatore : IEEE, 2009 : 1516 - 1519.
  • 6VUGDELIJA M. Determination of a time step interval in hydraulic system transients simulation[J]. Advances in Engineering Software, 1999, 31 (2) : 143 - 148.

二级参考文献12

共引文献9

同被引文献34

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部