期刊文献+

基于稀疏协方差矩阵迭代的单快拍气流速度估计算法 被引量:3

Single Snapshot Airspeed Estimation Based on Sparse Covariance Matrix Iteration
下载PDF
导出
摘要 该文研究基于声传感器阵列的单快拍气流速度估计问题。首先,根据声波在亚音速和超音速气流中的传播特性,针对特定的测量装置,建立了声传感器线性阵列的输出模型。在此基础上,提出一种稀疏协方差矩阵迭代的单快拍(Sparse Covariance Matrix Iteration with a Single Snapshot,SCMISS)气流速度估计算法,与其他稀疏估计方法相比,该文提出的SCMISS算法无需正则化参数选择,计算量更低,具有更强的实时性,且只需单快拍采样数据就可对亚音速和超音速气流速度进行统一估计。最后,为了评价所提算法的估计性能,推导了气流速度估计的克拉美-罗界(Cramér-Rao Bound,CRB)表达式。仿真实验验证了该算法的有效性。 The issue of single snapshot airspeed estimation is researched based on acoustic sensor array. According to the propagation property of acoustic waves in subsonic and supersonic air current, the output model of acoustic sensor array is constructed for a given measuring equipment. Then an airspeed estimation algorithm based on Sparse Covariance Matrix Iteration with a Single Snapshot (SCMISS) is presented. SCMISS has several unique features not shared by other sparse estimation methods: it does not require the user to make any difficult selection of regularization parameters, and it has lower computational complexity and better real-time. What is more, the proposed algorithm can be applied to both subsonic and supersonic circumstances with single snapshot measurement. Finally, a compact expression for the Cramér-Rao Bound (CRB) on the estimation error of airspeed is derived to evaluate the performance of the proposed algorithm. Simulations are implemented to show the effectiveness of SCMISS.
出处 《电子与信息学报》 EI CSCD 北大核心 2015年第3期574-579,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61172126) 吉林省自然科学基金(20140101073 JC)资助课题
关键词 阵列信号处理 气流速度估计 单快拍 稀疏参数估计 声传感器阵列 克拉美-罗界 Array signal processing Airspeed estimation Single snapshot Sparse parameter estimation Acoustic sensor array Cramer-Rao Bound (CRB)
  • 相关文献

参考文献2

二级参考文献26

  • 1孙贵青,李启虎.声矢量传感器研究进展[J].声学学报,2004,29(6):481-490. 被引量:101
  • 2邵笑杰,于盛林,张斌.卡尔曼滤波在嵌入式飞行数据传感系统中的运用[J].测控技术,2005,24(1):70-72. 被引量:2
  • 3张斌,于盛林.嵌入式飞行参数传感系统的神经网络算法[J].航空学报,2006,27(2):294-298. 被引量:16
  • 4Whitmore S A,Cobleigh B R,Haering E A. Design and calibration of the X-33 flush airdata sensing (FADS) system.NASA/TM-1998-206540[R].1998.
  • 5Baumann E,Pahle J W,Davis M C. X-43A flush airdata sensing system flight-test results[J].Journal of Spacecraft and Rockets,2010,(01):48-61.
  • 6Ellsworth J C,Whitmore S A. Simulation of a flush airdata system for transatmospheric vehicles[J].Journal of Spacecraft and Rockets,2008,(04):716-732.doi:10.2514/1.33541.
  • 7Ellsworth J C. An analytical explanation for the X-43A flush air data sensing system pressure mismatch between flight and theory.AIAA-2010-4964[R].2010.
  • 8Weiss S. Comparing three algorithms for modeling flush airdata system.AIAA-2002-0535[R].2002.
  • 9Rohloff T J. Development and evaluation of neural network flush air data sensing systems[M].Los Angles:University of California,1998.
  • 10Zheng C J,Lu Y P,He Z. Improved algorithms for flush airdata sensing system[J].Chinses Journal of Aeronautics,2006,(04):334-339.

共引文献13

同被引文献7

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部