期刊文献+

基于相关准则的稀疏微波成像方位向采样优化方法 被引量:3

Azimuth Sampling Optimization Scheme for Sparse Microwave Imaging Based on Mutual Coherence Criterion
下载PDF
导出
摘要 稀疏微波成像将稀疏信号处理理论系统性地引入微波成像中,与传统合成孔径雷达成像相比,具有提高成像质量、降低系统复杂度等优点。稀疏采样方式是影响稀疏微波成像重建质量的重要因素。该文主要研究方位向稀疏采样的优化问题,分析了稀疏微波成像观测矩阵的相关系数与重建能力的关系,在此基础上提出一种基于相关系数的优化准则,并对方位向稀疏采样参数进行优化。仿真结果验证了所提优化方法的有效性。 Sparse microwave imaging is a novel theory that systematically introduces sparse signal processing to microwave imaging. Compared with conventional synthetic aperture radar imaging, sparse microwave imaging exhibits the advantage of better imagery quality and lower system complexity. Non-ambiguity reconstruction for sparse scene can be achieved on under-sampling raw data by means of sparse microwave imaging, which leads to total data amount reduction. The imagery quality of sparse microwave imaging depends on the recovery property of measurement matrix, which is affected by the sparse sampling strategy. This paper focuses on the problem of design the azimuth sparse sampling scheme. The connection between mutual coherence and recovery property of the measurement matrix is analyzed. A mutual coherence based criterion is then proposed and applied to optimize the existing azimuth sparse sampling scheme. Numerical results demonstrate the effectiveness of the proposed method and conclusions are discussed.
出处 《电子与信息学报》 EI CSCD 北大核心 2015年第3期580-586,共7页 Journal of Electronics & Information Technology
关键词 合成孔径雷达 稀疏微波成像 方位向采样 相关准则 SAR Sparse microwave imaging Azimuth sampling Mutual coherence criterion
  • 相关文献

参考文献1

二级参考文献10

  • 1Narayanan R M, Xu Y, Hoffmeyer P D, and Curtis J O. Design, performance, and applications of a coherent ultra wide-band random noise radar [J]. Optical Engineering, 1998, 37(6): 1855-1869.
  • 2Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289 1306.
  • 3Baraniuk R G and Steeghs P. Compressive radar imaging [C]. IEEE Radar Conference, Boston, MA, USA, Apr.17-20, 2007 128-133.
  • 4Herman M A and Strohmer T. High-resolution radar via compressed sensing [J]. IEEE Transactions on Signal Processing, 2009, 57(6): 2275-2284.
  • 5Candes E J and Tao T. Decoding by linear programming [J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215.
  • 6Babacan S D, Molina R, and Katsaggelos A K. Bayesian compressive sensing using Laplace priors [J]. IEEETransactions on Image Processing, 2010, 19(1): 53-63.
  • 7Candes E J. The restricted isometry property and its implications for compressed sensing [J]. Comptes rendus del Cademie des Sciences, Scriel, 2008, 346(9-10): 589-592.
  • 8Baraniuk R G, Davenport M A, DeVote R, and Wakin M B. A simple proof of the restricted isometry property for random matrices [J]. Constructive Appro:rimation, 2008, 28(3): 253-263.
  • 9Tropp J A, Laska J N, Duarte M F, Romberg J K, and Baraniuk R G. Beyond Nyquist: efficient sampling of sparse bandlimited signals [J]. IEEE Transactions on Information Theory, 2010, 56(1): 520-544.
  • 10Cetin M and Karl W C. Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization [J]. IEEE Transactions on Image Processing, 2001, 10(4): 623-631.

共引文献17

同被引文献18

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部