期刊文献+

碟式太阳能聚光器气动特性和最大风压分布仿真分析 被引量:5

Simulation Analysis on the Aerodynamic Characteristics and Maximum Wind Pressure Distribution of Dish Solar Concentrator
下载PDF
导出
摘要 针对碟式太阳能聚光器最佳避风姿势问题,采用流体控制方程建立了碟式太阳能聚光器流场模型,并将计算得到的流场流速和压力再加载耦合到碟式太阳能聚光器前后表面,对碟式太阳能聚光器气动特性和风压分布进行仿真分析.结果表明:1风速对碟式太阳能聚光器表面中心区域最大风压影响很大,应适当提高碟式太阳能聚光器中心处的强度和刚度;2碟式太阳能聚光器的升力、阻力、侧向力和最大表面风压随风速增加而增加,且最大表面风压增加幅度尤显明显,但是风力系数随风速变化甚微;3不考虑流固耦合作用时碟式太阳能聚光器的升力系数、阻力系数、侧向力系数和最大表面风压的计算值存在较大的误差,在之后的计算中,应考虑流固耦合作用;4碟式太阳能聚光器表面最大风压随高度角和方位角的变化复杂,高度角为0°、方位角为45°姿势时达到最大. For the problem of the optimal shelter posture of dish solar concentrator,the flow fluid model of a dish solar concentrator was established by using fluid control equations,the calculated flow velocity and pressure were then loaded into the front and back surfaces of the dish solar concentrator,and then simulation analysis of the aerodynamic characteristics and pressure distribution of dish solar concentrator was carried out.The results show that wind speed has great influence on the maximum pressure of the central area of the dish solar concentrator surface and the strength and rigidity at the center of the dish solar concentrator should be improved.Besides,the lift force,drag force,lateral force and maximum surface pressure of the dish solar concentrator increase with the increase of wind speed,especially the maximum surface pressure,while wind coefficients change little with the change of wind speed.In addition,relatively big errors exist in the calculated values of lift force coefficient,drag coefficient,lateral force coefficient and maximum surface pressure when not considering the effect of fluid-structure interaction.Moreover,the maximum surface pressure of dish solar concentrator varies intricately with change of azimuth angle,and elevation angle and it reaches to maximum when the elevation angle is 0°and the azimuth angle is 45°.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第2期8-16,共9页 Journal of Hunan University:Natural Sciences
基金 国家留学基金资助项目(201208430262) 武器装备预研重点项目(9140A2011QT4801)
关键词 聚光器 虚拟风洞实验 气动特性 太阳能 流固耦合 concentrator virtual wind tunnel experiments aerodynamic characteristics solar energy fluid-structure interaction
  • 相关文献

参考文献2

二级参考文献17

  • 1张昕,黄本才,徐晓明,林高.体育场悬挑屋盖空间风激动力响应和等效风荷载实用计算[J].建筑结构学报,2005,26(2):40-45. 被引量:11
  • 2丁阳,赵奕程.大跨度空间钢管桁架结构的风振响应和风振控制研究[J].湖南大学学报(自然科学版),2006,33(3):17-21. 被引量:9
  • 3Honey W. Wind tunnel test of 1 : 30 scale heliostat field array model [ R ]. Albuquerque: Sandia National laboratories, 1978.
  • 4Peterka L, Bienkiewicz K, Hosoya N. Heliostat mean wind load reduction[J]. Energy, 1987, 12: 261-267.
  • 5Peterka J A, Hosoya N, Bienkiewicz B. Wind loads on solar collectors[R]. Blacksburg: Virginia Polytechnic Institute Report, 1980.
  • 6Strachan J. Testing and evaluation of large-area heliostats for solar thermal applications [ R]. California: SAND92-1381, Sandia National Laboratories, 1993.
  • 7张相庭.结构风压和风振计算[M].上海:同济大学出版社,1984.
  • 8GB 50009-2001建筑结构荷载规范[S].北京:中国建筑工业出版社,2002.
  • 9PETERKA J A,BIENKIEWICZ B, HOSOYA N, et al. Heliostat mean wind load reduction [ J ]. Energy, 1987, 12 ( 3/4 ) : 261 - 267.
  • 10PETERKA J A, HCXSK)YA N, BIENKIEWICZ B, et al. VPI-E-81-1, wind loads on solar collectors [R]. Blacksburg: Virginia Polytechnic Institute, 1980.

共引文献28

同被引文献51

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部