期刊文献+

基于World Wind平台的海洋流场三维可视化研究 被引量:4

Research on 3D visualization of ocean environment information based on World Wind platform
下载PDF
导出
摘要 针对如何在庞大但杂乱无章的海洋流场数据中获取有用信息,提出了建立三维动态可视化的World Wind平台。以Codar地波雷达采集到的三维空间数据为基础,对其进行了预处理,包括格式变换、提取有效数据经纬度和速度矢量信息(X、Y、U、V)和求取数据的最大范围,将处理后的每一时刻数据依据点图标映射法进行颜色映射,依照颜色映射结果,将处理后的每一时刻数据利用Direct3D技术绘制成流场箭头显示的形式,并在此基础上剪辑成视频,实现在World Wind平台上三维动态可视化的显示海洋流场信息。结果表明,该方法可直观展示流场信息的动态变化效果,并能为挖掘隐含信息提供方法。 To obtain useful information from large amounts of ocean flow field data, World Wind platform of3 D dynamic visualization was proposed. 3D space data which collected by Codar ground wave radar were prepro-cessed for format conversion, extraction of available data of latitude, longitude and the velocity vector information,and the maximum range of data calculation. Processed data of each moment was color mapped on the basis of pointicon mapping method. According to the result of color mapping, the processed data of each moment were drawn intothe flow field in the form of arrows using Direct3 D technology. On this basis, it was edited into a video. The oceanenvironment information was showed on 3D dynamic visualization based on World Wind platform. The result indi-cates that the platform can directly show the effect of dynamic changes of the flow field information, and the plat-form can provide method to excavate the implied information.
作者 张翰林 陈静
出处 《水道港口》 2015年第1期88-92,共5页 Journal of Waterway and Harbor
关键词 World WIND 海洋流场 三维可视化 点图标映射法 World Wind ocean environment information 3D visualization point icon mapping method
  • 相关文献

参考文献4

二级参考文献107

  • 1郑君杰,黄峰,张韧,董兆俊.基于纹理与分形理论的气象卫星云图目标物识别[J].气象科学,2005,25(3):244-248. 被引量:22
  • 2Dobashi Y, Nishita T, Ymashita H, et al. Modeling of clouds from satellite hnages using metaballs. Proc Pacific Graphics'98, 1998: 53--60.
  • 3Dobashi Y, Nishita T, Ymashita H, et al. Using metaballs to modeling and animate clouds from satellite image. The Visual Computer 1999;15 : 471-482.
  • 4Somporn C A, Willi J, Hans C B, et al. 3D cloud and strom reeon- struction from satellite image . Modeling, Simulation and Optimiza- tion of Complex Processes, 2008 : 187--206.
  • 5Hong Y, Hsu K, Gao X, et al. Precipitation estimation fi:om remotely sensed imagery using an artificial neural network - cloud classification system. Journal of Applied Meteorology, 2005 ; 43 (12) : 1834--1853.
  • 6Griffin M K, Hsu S M, Burke H K, et al. Images. Proe 2000 IEEE International Geoseienee and Remote Sensing Symposium, vol I][. Stein T. I. , Ed. Piscataway, 2000 : 809--812.
  • 7Ebert D S, Parent R E. Rendering and animation of gaseous phenom-ena by combing fast volume and scanline a - buffer techniques. Com- puter Graphics, 1990 ;24 (4) :357--366.
  • 8Elinas P. Real-time rendering of 3D clouds. Journal of Graphics Tools, 2000;5(4) : 33---45.
  • 9Hans M J. Real time cloud rendering. Proc of Eeurographics, 2001 : 76--84.
  • 10Miyazaki R, Yoshida S, Dobashi Y, et al. A method for modeling clouds based on atmospheric fluid dynamics. Ninth Pacific Confer- ence on Computer Graphics and Applications, 2001:363--372.

共引文献30

同被引文献27

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部