期刊文献+

基于幂级数展开的基本初等函数的高精度快速计算 被引量:1

FAST CALCULATION AND HIGH PRECISION OF BASIC ELEMENTARY FUNCTION BASED ON POWER SERIES EXPANSIONS
原文传递
导出
摘要 本文考虑了基本初等函数的高精度快速算法问题.首先讨论与Bernoulli数B_(2n)或Euler数E_(2n)相关的基本初等函数(如tanx、secx、tanhx等)的幂级数展开问题,并给出相应的幂级数展开式的快速算法.然后,对于基本初等函数、双曲函数和反双曲函数,在复数域上给出基于幂级数展开的任意精度的快速算法.由于指数、对数函数可以用幂级数表示,本文设计的算法适用于所有初等函数的计算.算法的特点是编程简单、容易实现,可以自成计算初等函数的体系. In this paper, we consider a fast and high-precision algorithm of the basic elementary functions. Firstly, we discuss the power series expansion of functions which are related to the Bernoulli number B2n or Euler number E2n, such as tan x, sec x, tanh x and so on, and study the corresponding fast computation. For the basic elementary functions, hyperbolic functions and inverse hyperbolic functions, we derive a fast and arbitrarily accurate algorithm based on the power series expansion in the complex domain. The algorithm proposed in this paper is suitable for all elementary functions due to that the exponential and logarithm functions can be expressed by the power series. The feature of this algorithm is that it can be easily coded and it is self-contained for the computation of the elementary functions.
出处 《数值计算与计算机应用》 CSCD 2015年第1期1-11,共11页 Journal on Numerical Methods and Computer Applications
基金 国家自然科学基金(61379009)资助项目
关键词 高精度快速计算 基本初等函数 BERNOULLI数 EULER数 Fast and arbitrary accuracy algorithm basic elementary functions Bernoul-li number Euler number
  • 相关文献

参考文献17

  • 1Brent R. The Complexity of Multiple-Precision Arithmetic, In Complexity of Computational Problem Solving, R. Anderssen and R. Brent, E.U. of Queensland Press, Brisbane, 1976, 126-165.
  • 2Brent R. Fast algorithms for high-precision computation of elementary functions (invited talk), Seventh Conference on Real Numbers and Computers (RNC7). Nancy. France. 10-12 July 2006, 7-8(extended abstract).
  • 3Brent R. A Fortran Multiple-Precision Arithmetic Package[J]. ACM Trans. Math. Software, 1978, 4: 57-70.
  • 4Reyna J, Brent R and Lune J. A note on the real part of the Riemann zeta-function, in Herman J.J.te Riele Liber Amicorum. CWI, Amsterdam, Dec. 2011. arXiv: 1112.4910vl.
  • 5Ziv A and Israel I, H Israel. Fast evaluation of elementary mathematical functions with correctly rounded last bit[J]. ACM Transactions on Mathematical Software, 1991, 17(3): 410-423.
  • 6Paszkowski S. Fast Convergent Quasipower Series for Some Elementary and Special :nctions[J]. Computers Math. Applic. 1997, 33(1-2): 181-191.
  • 7Brent R. Fast Multiple-Precision Evaluation of Elementary Functions[J]. Journal of the Aaaocia- tion for Computing Machmery, 1976, 23(2).
  • 8Tsumura H. An elementary proof of Euler's formula for, Amer. Math. Monthly, 2004, 111:430-431.
  • 9Deeba E and Rodriguez D. Stirling's Series and Bernoulli Numbers[J]. Amer. Math. Monthly, 1991, 98: 423-426.
  • 10Kaneko M. A Recurrence Formula for the Bernoulli Numbers[J]. Proc. Japan Acad., 1995, 71, Ser. A: 192-193.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部