摘要
利用勒让德多项式逼近理论和高斯-洛巴托求积公式,构造了一个4级4阶的隐式Runge-Kutta方法.理论分析发现,该算法具有良好的稳定性一是A(Q)稳定的且α接近于90^0,是刚性稳定的且D值接近于0,几乎是A稳定的和五稳定的,并能有效求解刚性常微分方程初值问题,数值算例显示了该算法的有效性.
By using the Legendre polynomials approximation theory and Gauss-Lobatto quadrature formula, a four-stage fourth-order implicit Runge-Kutta method is presented. It is showed that the new algorithm has good stability properties in theoretical analysis, A(a) -stable and a is close to ninety degrees, and stiff stable and D is close to zero. It is almost A-stable and almost L-stable. The new method can solve stiff ordinary differential equations effectively. The numerical examples illustrate its effectiveness.
出处
《数值计算与计算机应用》
CSCD
2015年第1期22-30,共9页
Journal on Numerical Methods and Computer Applications
基金
陕西省教育厅科学研究计划(11JK0524)资助项目