期刊文献+

基于勒让德多项式逼近的4级4阶隐式Runge-Kutta方法

A FOUR-STAGE FOURTH-ORDER IMPLICIT RUNGE-KUTTA METHOD BASED ON LEGENDRE POLYNOMIALS APPROXIMATION
原文传递
导出
摘要 利用勒让德多项式逼近理论和高斯-洛巴托求积公式,构造了一个4级4阶的隐式Runge-Kutta方法.理论分析发现,该算法具有良好的稳定性一是A(Q)稳定的且α接近于90^0,是刚性稳定的且D值接近于0,几乎是A稳定的和五稳定的,并能有效求解刚性常微分方程初值问题,数值算例显示了该算法的有效性. By using the Legendre polynomials approximation theory and Gauss-Lobatto quadrature formula, a four-stage fourth-order implicit Runge-Kutta method is presented. It is showed that the new algorithm has good stability properties in theoretical analysis, A(a) -stable and a is close to ninety degrees, and stiff stable and D is close to zero. It is almost A-stable and almost L-stable. The new method can solve stiff ordinary differential equations effectively. The numerical examples illustrate its effectiveness.
出处 《数值计算与计算机应用》 CSCD 2015年第1期22-30,共9页 Journal on Numerical Methods and Computer Applications
基金 陕西省教育厅科学研究计划(11JK0524)资助项目
关键词 勒让德多项式 隐式Runge—Kutta法 阶条件 稳定性 Legendre polynomials Implicit Runge-Kutta method Order condition stability
  • 相关文献

参考文献8

  • 1Goeken D, Johnson O. Fifth-order Runge-Kutta with higher order derivative approximations[J] Electronic Journal of Differential Equations, 1999, 2: 1-9.
  • 2Podisuk M. Open formula of Runge-Kutta method for solving autonomous ordinary differential equation[J]. Applied Mathematics and Computation. 2006, 181(1): 536-542.
  • 3Ramos H, Vigo-Aguiar J. A fourth-order Runge-Kutta method based on BDF-type Chebyshev approximations[J]. 3ournal of computational and applied mathematics, 2007, 204(1): 124-136.
  • 4Kulikov G Yu, Shindin S K. Adaptive nested implicit Runge-Kutta formulas of Gauss type[J]. Applied Numerical Mathematics, 2009, 59: 707-722.
  • 5Wu Xinyuan. A class of Runge-Kutta of order three and four with reduced evaluations of func- tion[J]. Applied Mathematics and Computation. 2003, 146: 417-432.
  • 6Niegemann J, Diehl R, Busch K. Efficient low-storage Runge-Kutta schemes with optimized sta- bility regions[J]. Journal of Computational Physics, 2012, 231(2): 364-372.
  • 7Najafi-Yazdi A, Mongeau L. A low-dispersion and low-dissipation implicit Runge-Kutta scheme[J]. Journal of computational physics, 2013, 233: 315-323.
  • 8Kalogiratou Z. Diagonally implicit trigonometrically fitted symplectic Runge-Kutta methods[J]. Applied Mathematics and Computation, 2013, 219: 7406-7421.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部