摘要
本文给出了三种有限元的特征值方法求解三维Laplace算子特征值和边值问题的数值计算结果;探索了已有的非协调元和协调元的一些理论性质;猜测新的七个自由度三维NF_1元的数值规律.数值实验表明:七个自由度三维NF_1元和三维EQ_1^(rot)元特征值都下逼近准确特征值;七个自由度三维NF_1元和三维EQ_1^(rot)元二网格离散方案特征值都下逼近准确特征值;七个自由度三维NF_1元外推特征值下逼近准确特征值;七个自由度三维NF_1元比三维EQ_1^(rot)元有较好的数值表现;八节点等参数元特征值上逼近准确特征值.
In this paper, the numerical results of three-dimensional Laplace operator eigenvalue and boundary problems are given by methods of eigenvalue methods of three finite ele- ments. We explore the theoretical properties of the known non-conforming element and conforming element and conjecture the numerical law for the new three-dimensional NFi element of 7-degree of freedom. It is shown by the numerical experiments results that the three-dimensional NF1 non-conforming element of 7-degree of freedom and the three- dimensional EQ1rot non-conforming element eigenvalues approximate exact eigenvalues from below, the three-dimensional NF1 non-conforming element of 7-degree of freedom and the three-dimensional EQ1rot non-conforming element two-grid discretization schemes eigenval- ues approximate exact eigenvalues from below, the three-dimensional NF1 non-conforming element of 7-degree of freedom extrapolation eigenvalues approximate exact eigenvalues from below, the numerical accuracy of the three-dimensional NF1 non-conforming element of 7- degree of freedom is much better than that of the three-dimensional EQ1rot non-conforming element, 3-rectangle of degree 2 conforming element eigenvalues approximate exact eigenval- ues from above.
出处
《数值计算与计算机应用》
CSCD
2015年第1期69-80,共12页
Journal on Numerical Methods and Computer Applications
基金
国家自然科学基金(11361012)
贵州省科技厅科学基金项目(黔科合J字[2013]2083)
关键词
七个自由度三维NF1元
三维EQ1rot元
八节点等参数元
三维Poisson方程
特征值
特征值下界
二网格离散方案
three-dimensional NF1 non-conforming element of 7-degree of freedom
three-dimensional EQ1rot non-conforming element
3-rectangle of degree 2 conforming element
three-dimensional Poisson equation
eigenvalue
the lower hounds of eigenvalues
two-grid discretization schemes